1. Let $X = \{\alpha, \beta\}$, $Y = \{\gamma, \delta\}$. Thus:
 a. $X^2 = \{\alpha\alpha, \beta\beta, \alpha\beta, \beta\alpha\}$
 b. $Y^3 = \{\alpha\alpha\alpha, \alpha\alpha\beta, \alpha\beta\alpha, \alpha\beta\beta, \beta\alpha\alpha, \beta\alpha\beta, \beta\beta\alpha, \beta\beta\beta\}$
 c. $YX = \{\gamma\alpha, \gamma\beta, \delta\alpha, \delta\beta\}$

2. If $a(ab)^*a^*$ is a regular expression, then it generates the language of words that start with an a, then any number of repetitions of “ab”, followed by any number of as. The finite state machine that would recognize this language would look like this:

 ![Finite State Machine](image)

3. Let $L = \{x \mid x \text{ begins and ends with 01}\}$ be a language over $\sum = \{0, 1\}$. The finite state automata that would recognize this language looks like:

 ![Finite State Automata](image)