Lecture 4. Generalizing Policy Interactions (B)

Eric M. Leeper
Indiana University
September 2008
THE MESSAGES

- Difficult to obtain general analytical results with both monetary and fiscal switching
- Will examine some special cases and then turn to numerical results
- Allowing recurring regime change in both MP & FP can dramatically change nature of equilibria we study
- Raises the possibility for FP to play a role in our interpretations of business cycles
MONETARY AND FISCAL POLICY INTERACTIONS

- Standard reasoning about macro policy
 - active monetary policy necessary for stability
 - Taylor principle delivers good economic performance in many models
 - high and variable inflation due to indeterminacy
 - active monetary/passive fiscal policies insulate economy from demand shocks (e.g., fiscal)

- Reasoning rests on convenient assumptions
 - passive fiscal behavior
 - fixed policy regimes
 - local \implies global
Regime Change

- Regime change: realizations of params in policy rule
 \[R_t = \alpha_0(S_t) + \alpha_\pi(S_t)\pi_t + \alpha_x(S_t)x_t + \sigma(S_t)\varepsilon_t \]

 S_t evolves stochastically by a known process

- Many researchers have estimated policy rules to find parameters changed over time
 - Taylor, Clarida-Galí-Gertler, Auerbach, Lubik- Schorfheide, Sala, Favero-Monacelli

- Fixed-regime theory: problematic interpretation
 - ex-ante agents put probability 0 on change
 - ex-post agents put probability 1 on new regime
 - Cooley-LeRoy-Raymon: this is logically inconsistent
What We Do

- Bring together empirical and theoretical work
- Estimate Markov-switching rules for U.S. monetary and fiscal policies
- Embed estimated joint policy process in DSGE model with rigidities
WHAT WE FIND

- Policies fluctuate between active & passive
 - some active/active; some passive/passive
- Fit is good; connects to narrative accounts
- Post-war U.S. data can be modeled as a single, locally unique equilibrium
- Fiscal theory of price level always operative
 - taxes matter even with active MP/passive FP
- Fiscal theory mechanism quantitatively important
 - $1 transitory tax cut \Rightarrow PV output rises \approx 1
- Common practice: break samples into distinct regimes and embed rules in fixed-regime DSGE can produce misleading inferences
Canzoneri, Cumby, Diba: Ricardian equilibria more general than non-Ricardian

- if responses of taxes to liabilities is positive infinitely often—however small and infrequent—then eqm exhibits Ricardian equiv
- because fiscal response does not stabilize debt, these are potentially equilibria with unbounded debt-output ratios

Our example satisfies CCD’s assumptions, but deliver a unique eqm in set with bounded debt-output ratios

- this eqm is non-Ricardian
- important conclusions hinge on unboundedness ass’n of CCD
The Model

- MIUF, constant endowment, log prefs, constant \(g \)
- Fisher equation
 \[
 \frac{1}{R_t} = \beta E_t \frac{1}{\pi_{t+1}}
 \]
- Money demand
 \[
 m_t = \left[\frac{R_t - 1}{R_t} \right]^{-1} c
 \]
- Monetary policy
 \[
 R_t = \exp(\alpha_0 + \alpha(S_t) \hat{\pi}_t + \theta_t)
 \]
- Tax policy
 \[
 \tau_t = \gamma_0 + \gamma(S_t)(b_{t-1} + m_{t-1}) + \psi_t
 \]

\((\theta_t, \psi_t)\) exogenous policy shocks; \(\hat{\pi} = \ln \pi \)
The Model

- S_t an N-state Markov chain with transition probs
 \[P[S_t = j|S_{t-1} = i] = p_{ij} \]
- Define expectation error (and use Fisher equation)
 \[\eta_{t+1} \equiv \frac{1/\pi_{t+1}}{E_t[1/\pi_{t+1}]} = \beta \frac{R_t}{\pi_{t+1}} \]
- Then the inflation process is given by
 \[\hat{\pi}_{t+1} = \alpha(S_t) \hat{\pi}_t + \alpha_0 + \theta_t - \hat{\eta}_{t+1} + \ln \beta \]
- Let $l_t = b_t + m_t$, real govt liabilities
- Use tax rule & money demand in govt budget constraint

\[
l_t = \left[\frac{R_{t-1}}{\pi_t} - \gamma(S_t) \right] l_{t-1} - \frac{R_{t-1}}{\pi_t} c + D - \psi_t \]

\[D = g - \gamma_0 \]
Solution

• Assume that

 I. \(E_t[\gamma_{t+1}] = \gamma \)

 II. \(\gamma \) satisfies \(|1/\beta - \gamma| > 1\)

 III. inflation process is stable in expectation (i.e., there exists a \(0 < \xi < \infty \) such that \(|E_t\pi_{t+k}| < \xi \) for all \(k \))

• (I)-(II): on average FP active; (III): on average MP passive

• Iterate on \(l \) equation and take \(E_{t-1} \) and law of iterated expectations

\[
E_{t-1}[l_{t+k}] = (1/\beta - \gamma)^{k+1} \left[l_{t-1} - c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right) \right] \\
+ c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right)
\]

Stability requires that \(l_{t-1} = c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right) \), which is positive if \(D/c < 1/\beta \).
The value of η_t is obtained from the budget constraint after substituting in the value of l:

$$
\eta_t = \beta \frac{(1 + \gamma(S_t)) (\frac{1}{\beta} - \frac{D}{c}) - (\frac{D}{c}) (\frac{1}{\beta} - \gamma - 1)}{1 + \gamma - \frac{D}{c}} \\
+ \frac{\beta}{c} \left(\frac{1/\beta - \gamma - 1}{1 + \gamma - \frac{D}{c}} \right) \psi_t
$$

The unique eqm mapping from ψ_t and $\gamma(S_t)$ to forecast error in inflation

η and π_t process yields unique solution for inflation
Concrete Example

- Two regimes, \(N = 2 \), and policy parameters take on the values

\[
\alpha(S_t) = \begin{cases}
\alpha(1) & \text{for } S_t = 1 \\
\alpha(2) & \text{for } S_t = 2
\end{cases} \quad \gamma(S_t) = \begin{cases}
\gamma(1) & \text{for } S_t = 1 \\
\gamma(2) & \text{for } S_t = 2
\end{cases}
\]

- Suppose \(\alpha(1) \) and \(\alpha(2) \) are sufficiently small such that the inflation process is stable in expectation

\[
E[\gamma_{t+j} | S_t = 1, \Omega_t] = \gamma(1)p_{11} + \gamma(2)p_{12}
\]

\[
= E[\gamma_{t+j} | S_t = 2, \Omega_t] = \gamma(1)p_{21} + \gamma(2)p_{22} \equiv \gamma
\]

- If either \(\gamma(1) \) or \(\gamma(2) \) is positive, then the model satisfies CCD’s premise that taxes adjust to debt infinitely often
- But negative tax shocks generate wealth effects that raise inflation
- The only eqm with bounded debt is one in which Ricardian equiv breaks down
Policy Rule Estimates

- Hidden Markov chain, as in Hamilton and Kim-Nelson
- Off-the-shelf policy rules; no dynamics
- Independent switching of M & F regimes

\[r_t = \alpha_0(S^M_t) + \alpha_\pi(S^M_t)\pi_t + \alpha_x(S^M_t)x_t + \sigma_R(S^M_t)\varepsilon_t^r \]

4 states, \(\alpha \)'s have 2 sets of values, \(P^M \) transition matrix

\[\tau_t = \gamma_0(S^F_t) + \gamma_b(S^F_t)b_{t-1} + \gamma_x(S^F_t)x_t + \gamma_g(S^F_t)g_t + \sigma_\tau(S^F_t)\varepsilon_t^\tau \]

2 states, \(P^F \) transition matrix

- \(S_t = (S^M_t, S^F_t) \). Joint distribution \(P = P^M \otimes P^F \), 8 states
Policy Rule Estimates

• U.S. data, 1948:2-2004:1

• r: 3-month Treasury bill
• π: log difference of GDP deflator
• x: log output gap using CBO potential
• τ: federal receipts net transfers as share of GDP
• b: market value of federal debt held by public as share of GDP
• g: federal government consumption plus investment expenditures as a share of GDP
POLICY RULE ESTIMATES

• Four checks on plausibility of estimates
 1. Are the estimates reasonable on *a priori* grounds?
 2. Do the estimates fit the data?
 3. Do the estimates accord with narrative and other evidence on active/passive periods?
 4. Does the estimated policy process make sense in a standard DSGE model?

• Yes!
Monetary Policy Estimates

<table>
<thead>
<tr>
<th>State</th>
<th>$S_t^M = 1$</th>
<th>$S_t^M = 2$</th>
<th>$S_t^M = 3$</th>
<th>$S_t^M = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_π</td>
<td>1.3079</td>
<td>1.3079</td>
<td>.5220</td>
<td>.5220</td>
</tr>
<tr>
<td></td>
<td>(.0527)</td>
<td>(.0527)</td>
<td>(.0175)</td>
<td>(.0175)</td>
</tr>
<tr>
<td>α_y</td>
<td>.0232</td>
<td>.0232</td>
<td>.0462</td>
<td>.0462</td>
</tr>
<tr>
<td></td>
<td>(.0116)</td>
<td>(.0116)</td>
<td>(.0043)</td>
<td>(.0043)</td>
</tr>
<tr>
<td>σ_r^2</td>
<td>1.266e-5</td>
<td>9.184e-7</td>
<td>2.713e-5</td>
<td>5.434e-7</td>
</tr>
<tr>
<td></td>
<td>(8.670e-6)</td>
<td>(1.960e-6)</td>
<td>(5.423e-6)</td>
<td>(1.512e-6)</td>
</tr>
</tbody>
</table>

Table 1: Log likelihood value = -1014.737
Tax Policy Estimates

<table>
<thead>
<tr>
<th>State</th>
<th>$S_t^F = 1$</th>
<th>$S_t^F = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>.0497</td>
<td>.0385</td>
</tr>
<tr>
<td></td>
<td>(.0021)</td>
<td>(.0032)</td>
</tr>
<tr>
<td>γ_b</td>
<td>.0136</td>
<td>-.0094</td>
</tr>
<tr>
<td></td>
<td>(.0012)</td>
<td>(.0013)</td>
</tr>
<tr>
<td>γ_y</td>
<td>.4596</td>
<td>.2754</td>
</tr>
<tr>
<td></td>
<td>(.0326)</td>
<td>(.0330)</td>
</tr>
<tr>
<td>γ_g</td>
<td>.2671</td>
<td>.6563</td>
</tr>
<tr>
<td></td>
<td>(.0174)</td>
<td>(.0230)</td>
</tr>
<tr>
<td>σ^2_τ</td>
<td>4.049e-5</td>
<td>5.752e-5</td>
</tr>
<tr>
<td></td>
<td>(6.909e-6)</td>
<td>(8.472e-6)</td>
</tr>
</tbody>
</table>

Table 2: Log likelihood value $= -765.279$
INTEREST RATE: ACTUAL & PREDICTED
Taxes: Actual & Predicted

The graph shows the comparison between actual and predicted values of taxes from 1950 to 2000. The y-axis represents the tax value, ranging from 0.02 to 0.16. The x-axis represents the years from 1950 to 2000. The graph includes three lines: the actual values, smoothed values, and filtered values. The smoothed and filtered values are indicated by dashed lines.
MONETARY REGIME PROBABILITIES

Monetary Regime Probabilities

Active, High σ

Active, Low σ

Passive, High σ

Passive, Low σ
Fiscal Regime Probabilities

Fiscal Regime Probabilities

Passive

Active

0 0.5 1
0 0.5 1
0 0.5 1
0 0.5 1
0 0.5 1
0 0.5 1
JOINT POLICY REGIME PROBABILITIES
A Model with Nominal Rigidities

- Conventional: monopolistic competition, Calvo pricing, elastic labor, lump-sum taxes, nominal debt

- Households

\[
E_t \sum_{i=0}^{\infty} \beta^i \left[\frac{C_{t+i}^{1-\sigma}}{1-\sigma} - \chi \frac{N_{t+i}^{1+\eta}}{1+\eta} + \delta \frac{(M_{t+i}/P_{t+i})^{1-\kappa}}{1-\kappa} \right]
\]

\[
C_t = \left[\int_0^1 c_{j,t}^{\theta-1} \frac{dj}{\theta} \right]^{\frac{\theta}{\theta-1}}, \theta > 1
\]

\[
C_t + \frac{M_t}{P_t} + E_t \left(Q_{t,t+1} \frac{B_t}{P_t} \right) + \tau_t \leq \left(\frac{W_t}{P_t} \right) N_t + \frac{M_{t-1}}{P_t} + \frac{B_{t-1}}{P_t} + \Pi_t
\]

\[
E_t[Q_{t,t+1}]^{-1} = 1 + r_t
\]
A Model with Nominal Rigidities

- Firms

\[E_t \sum_{i=0}^{\infty} \varphi^i q_{t+i} \left[\left(\frac{p_t^*}{P_{t+i}} \right)^{1-\theta} - \Psi_{t+i} \left(\frac{p_t^*}{P_{t+i}} \right)^{-\theta} \right] Y_{t+i} \left(\frac{p_t^*}{P_t} \right) = \left(\frac{\theta}{\theta - 1} \right) \frac{K_{1t}}{K_{2t}} \]

\[K_{1t} = (Y_t - G_t)^{-\sigma} \Psi_t Y_t + \varphi \beta E_t K_{1t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta} \]

\[K_{2t} = (Y_t - G_t)^{-\sigma} Y_t + \varphi \beta E_t K_{2t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta-1} \]

\[\pi_t^{\theta-1} = \frac{1}{\varphi} - \frac{1-\varphi}{\varphi} \left(\mu \frac{K_{1t}}{K_{2t}} \right)^{1-\theta} \]

- Relative price dispersion

\[\Delta_t = (1 - \varphi) \left(\frac{p_t^*}{P_t} \right)^{-\theta} + \varphi \pi_t^{\theta} \Delta_{t-1} \]
A Model with Nominal Rigidities

- Policy follows estimated rules and satisfies

\[G_t = \tau_t + \frac{M_t - M_{t-1}}{P_t} + E_t \left(Q_{t,t+1} \frac{B_t}{P_t} \right) - \frac{B_{t-1}}{P_t} \]

- Two information assumptions:
 - standard: \(\Omega_t = \{ \varepsilon_{t-j}^r, \varepsilon_{t-j}^\tau, S_{t-j}^M, S_{t-j}^F, j \geq 0 \} \)
 - foreknowledge: \(\Omega_t^* = \Omega_t \cup \{ \varepsilon_{t+1}^r \} \)

- Focus on stationary equilibria
 - \(b/y \to \infty \) feasible with lump-sum taxes
 - U.S. \(b/y \) appears stationary

- Use monotone map method to solve non-linear model
 - finds functions mapping state to decisions
 - state: \(\Theta_t = \{ b_{t-1}, w_{t-1}, \Delta_{t-1}, \varepsilon_t^r, \varepsilon_t^\tau, S_t \} \)
The Fiscal Theory Mechanism

- The ubiquitous equilibrium condition
 \[\frac{M_{t-1} + B_{t-1}}{P_t} = \sum_{T=t}^{\infty} E_t \left[q_{t,T} \left(\tau_T - G_T + \frac{r_T}{1+r_T} \frac{M_T}{P_T} \right) \right] \]

- Three sources of financing: net-of-interest surpluses; seigniorage; revaluations induced by jumps in \(P_t \)

- Cut \(\tau_t \) with exogenous \(\tau - G \) and pegged \(r \)
 - at initial prices, feel wealthier
 - increase demand for current goods
 - raises output relative to potential
 - money stock expands passively
 - must also raise inflation & lower real rates

- With positive probability of active FP, the mechanism is always operating
Characteristics of Equilibrium

- Numerical analysis of uniqueness and stationarity
- Numerical checks
 - randomly perturb decision rules at points in state space: converge back?
 - how monotone map behaves when properties known
 - indeterminacy (non-convergence)
 - non-existence (converges but solutions explode)
- zero expected present value of debt?
- histograms
Quantifying the Fiscal Theory

- Three regimes are stationary
 - AM/PF, PM/PF, PM/AF
 - AM/AF exhibits slowly growing debt
- A surprise tax cut of 2% of GDP, conditional on each stationary regime
 1. condition on remaining in prevailing regime
 2. average across future regimes
- Compute tax multipliers
 - condition on initial regime
NON-LINEAR IMPULSE RESPONSES

- Draw from regime after initial shock
Tax Multipliers

- Defined as

\[
PV_n(\Delta y) / \Delta \tau_0 = \frac{1}{\Delta \tau_0} \sum_{s=0}^{n} q_{0,s} (y_s - \bar{y})
\]

\(n = 5, 10, 20, \infty\)

- Size depends on conditioning regime
 - always non-trivial
 - potentially large (\(> 1\))

- Similar impacts from unanticipated and anticipated changes

- With draws from future regimes
 - size depends on initial regime
 - range can be very wide
Output Multipliers

Init Regime	5 quarters $\frac{PV(\Delta y)}{\Delta \tau}$ after 10 quarters $\frac{PV(\Delta y)}{\Delta \tau}$ after 25 quarters $\frac{PV(\Delta y)}{\Delta \tau}$		
AM/PF	$[-.126, -.400]$	$[-.213, -.754]$	$[-.430, -.922]$
PM/PF	$[-.215, -.401]$	$[-.271, -.623]$	$[-.414, -.764]$
PM/AF	$[-.365, -.568]$	$[-.537, -.928]$	$[-.993, -1.363]$

Table 3: 80th percentile bands based on 10,000 draws
Price Level Effects

<table>
<thead>
<tr>
<th>Regime</th>
<th>5 quarters</th>
<th>10 quarters</th>
<th>25 quarters</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM/PF</td>
<td>0.324</td>
<td>0.641</td>
<td>1.513</td>
<td>6.704</td>
</tr>
<tr>
<td>PM/PF</td>
<td>0.770</td>
<td>1.077</td>
<td>1.232</td>
<td>1.237</td>
</tr>
<tr>
<td>PM/AF</td>
<td>0.949</td>
<td>1.369</td>
<td>1.620</td>
<td>1.633</td>
</tr>
</tbody>
</table>

Table 4: Cumulative effect on price level of an *i.i.d.* unanticipated tax cut of 2 percent of output, conditional on regime.
Fiscal Theory Robust

- Percentage of time in AM/PF regime
Some Empirical Implications

- Observed time series produced by switching DSGE
- Correctly identified VAR, but fixed regime
- Policy rules and pattern matrix:

\[
\begin{align*}
 r_t &= \alpha_0 + \alpha_{\pi}\pi_t + \alpha_{x}x_t + \varepsilon^r_t \\
 \tau_t &= \gamma_0 + \gamma_{x}x_t + \gamma_{b}b_{t-1} + \varepsilon^\tau_t
\end{align*}
\]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>π</td>
<td>b</td>
<td>MP</td>
<td>FP</td>
</tr>
<tr>
<td>x</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\otimes</td>
<td>\otimes</td>
</tr>
<tr>
<td>π</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>τ</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>

\times: freely estimated; \otimes: imposed
Some Empirical Implications

- Two assumptions about econometrician’s information
 1. full sample from single regime (draws from shocks & regime)
 2. extra-sample information to identify regime (draws only from shocks)
- Econometrician interprets results with fixed-regime DSGE
- Accurate quantitative estimates $\hat{\alpha}_\pi, \hat{\gamma}_b$

<table>
<thead>
<tr>
<th>All Regimes</th>
<th>AM/PF</th>
<th>PM/PF</th>
<th>PM/AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}_\pi$</td>
<td>0.723</td>
<td>1.308</td>
<td>0.595</td>
</tr>
<tr>
<td>$\hat{\gamma}_b$</td>
<td>0.002</td>
<td>0.016</td>
<td>0.018</td>
</tr>
</tbody>
</table>

- Inaccurate qualitative inferences
Some Empirical Implications

“Fixed”: All Regimes parameters in fixed-regime DSGE
Some Empirical Implications

- “All regimes” implies PM/AF: fiscal theory equilibrium
 - correct inference about policy impacts
- Conditioning on regime gives incorrect inferences
 - AM/PF: Taylor principle & Ricardian
 - PM/PF: Indeterminacy & sunspots
- Most accuracy from full sample and averaging across regimes
 - quantitative predictions close
 - qualitative inferences correct
Wrap Up

- Fiscal theory can break down Ricardian equivalence
 - may be quantitatively important in U.S.
 - likely still more important in other countries
- If fiscal theory important, need to modify models
- Misleading to study MP (or FP) in isolation
 - models must be consistent with evidence on both MP & FP
- Need a serious integration of MP & FP
 - tax distortions
 - other sources of non-neutrality
 - GBC met non-trivially
Wrap Up

- Empirical complications
 - identification: disentangling monetary and fiscal impacts
 - unobserved fiscal state: foreknowledge of fiscal policy
- Understanding source of regime change
 - optimal policy response?
- Holy Grail
 - joint estimation of policy and private parameters in DSGE with switching
 - some work with just MP switching (Zha et al.) and with everything switching (Svensson-Williams)
 - no work with MP & FP switching