Norges Bank Mini-Course:
Boundedness of Government Debt

Eric M. Leeper
Indiana University
April 2013
Why Does This Matter?

- Should we restrict attention to equilibria in which debt is bounded?
- Seems like an obscure & technical topic
- It turns out to matter quite a lot
 - permitting debt to grow without bound means imposing one less boundary condition
 - no boundary condition admits many more legitimate solutions
 - these solutions have been interpreted to imply that the fiscal theory is “special” while Ricardian outcomes are “general”
- This lecture explains what is at stake
Sketching the Issue

Consider a log-linearized government budget constraint and tax rule

\[b_t = \beta^{-1} b_{t-1} - (\beta^{-1} - 1) \tau_t + \text{stuff} \] \hspace{1cm} (1)

\[\tau_t = \gamma b_{t-1} \] \hspace{1cm} (2)

Combining these, get difference equation in real debt

\[b_t = \Gamma b_{t-1} + \text{stuff} \] \hspace{1cm} (3)

\[\Gamma \equiv \beta^{-1} - \gamma (\beta^{-1} - 1) \]

Also a transversality condition

\[\lim_{j \to \infty} \beta^j E_t b_{t+j} = 0 \] \hspace{1cm} (4)
Sketching the Issue

- Often we impose \(\{b_t\} \) must be bounded
 - restrict to solutions with \(0 \leq \Gamma < 1 \) (or \(\gamma > 1 \))
 - sufficient *but not necessary* for transversality
 - TVC requires that debt not grow “too fast” (not that debt is bounded)

- If \(\{\tau_t\} \) is **lump sum**
 - a solution where \(b_t \) and \(\tau_t \) grow without bound, may be an equilibrium
 - it is feasible with growing debt to raise the required revenues

- In such a model, the stability condition is weaker

\[
0 \leq \Gamma < \beta^{-1} \quad \text{or} \quad \gamma > 0
\]

- Permits many more solutions
This Lecture

- Review Canzoneri, Cumby, Diba’s argument
 - show that it relies on unbounded debt

- Review Chung, Davig, Leeper’s setup
 - show that under CCD’s assumptions, the only bounded solution is one that is consistent with the fiscal theory
CCD’s Argument

▶ Write the government’s budget constraint as

\[
\frac{M_t + B_t}{P_{t}y_{t}} = \frac{T_t - G_t}{P_{t}y_{t}} + \frac{M_{t+1}}{P_{t}y_{t}} \left(\frac{i_t}{1 + i_t} \right)
\]

\[
\left(\frac{Y_{t+1}/Y_t}{(1 + i_t)P_t/P_{t+1}} \right) \left(\frac{M_{t+1} + B_{t+1}}{P_{t+1}y_{t+1}} \right)
\]

(6)

▶ Simplify (6) as

\[
w_t = s_t + \delta_t w_{t+1}
\]

(7)

\(w_t\): govt liabilities/nominal GDP; \(s_t\): primary surplus; \(\delta_t\): real discount factor
CCD’s Argument

- Solve (7) forward & take expectations

\[
 w_t = s_t + E_t \sum_{j=t+1}^{\infty} \left(\prod_{k=t}^{j-1} \delta_k \right) s_j
\]

\[
 \iff \lim_{j \to \infty} E_t \left(\prod_{k=t}^{T+t-1} \delta_k \right) w_t = 0
\]

- How does (8) get satisfied?

1 **Ricardian Regime** If \(\{s_t\} \) adjusts to satisfy (8) for all \((\{\delta_t\}, w_t) \) sequences

2 **Non-Ricardian Regime** If \(\{s_t\} \) unrelated to debt, then \(P_t y_t \) must adjust to satisfy (8)
Suppose fiscal policy obeys

\[s_t = c_t w_t + \varepsilon_t \] \hspace{1cm} (9)

Assume \(\{c_t\}, \{\delta_t\}, \{\varepsilon_t\} \) deterministic sequences & \(\{\varepsilon_t\} \) bounded

If (C1) & (C2) are satisfied, then (9) implies Ricardian Regime

\[0 \leq c_j < 1, \quad \limsup c_j > c^* > 0 \] \hspace{1cm} (C1)

\[D_t \equiv 1 + \sum_{j=t+1}^{\infty} \left(\prod_{k=t}^{j-1} \delta_k \right) < \infty \] \hspace{1cm} (C2)
Condition (C2) technical: required for present-value condition to be well defined

Condition (C1) is substantive

- \(c_j \) bounded away from zero infinitely often (FP does not try to rollover debt indefinitely)
- when \(c_j > 0 \): \(s_j \) moves to stabilize \(w_j \) but it need not do so in every period
- for fiscal rule (9) to deliver the Ricardian Regime, just need agents to expect that sooner or later FP will adjust to stabilize debt
- note that the longer policy delays responding to debt, the larger must be the adjustments to \(s_j \)
Proposition: Assume that \(\{c_j\}, \{\delta_j\}, \{\varepsilon_j\} \) are deterministic sequences, \(\delta_j > 0 \), \(\{\varepsilon_j\} \) is bounded, and (C1) & (C2) hold. Then the flow budget constraint, (7), and the fiscal rule, (9), imply that the present-value equilibrium condition, (8), holds for any arbitrary \(w_t \), and fiscal rule (9) delivers a Ricardian Regime.
CCD’s Argument

- Intuition for CCD’s proposition
- Suppose that $c_j = c \geq 0$ & $\delta_j = \delta < 1$ for all j
 - if $c = 0$, then (7) unstable with root $1/\delta > 1 \Rightarrow$
 - Non-Ricardian Regime so w_t must jump to suppress the unstable root so (8) can hold in equilibrium
 - use (9) in (7), so root is $(1 - c)/\delta$
 - if c large enough to make $(1 - c)/\delta < 1$, then (7) is stable & (8) holds for any w_t
 - c need not make debt stable: (8) requires only that discounted value of $w_{t+T} \rightarrow 0$ as $T \rightarrow \infty$
 - any positive c ensures $PV(w) = 0$

- If the fiscal response is time-varying, (C1) says that the response may be arbitrarily small and infrequent
 - if c_t followed a recurrent Markov chain with $c = 0$ in state 1 & $c > 0$ in state 2, (C1) is satisfied
Comments on CCD’s Argument

1. Ricardian FP imposes no restriction on P_{tyt} because surplus adjusts to ensure (8) holds for all $\{P_{tyt}\}$ sequences
 ▶ raises the specter of indeterminacy

2. CCD’s definition of Ricardian says nothing about whether taxes matter
 ▶ in CCD’s proposition, Ricardian FP consistent with taxes being irrelevant or taxes having wealth effects

3. CCD silent about monetary policy
 ▶ to give the proposition more content, need to specify MP behavior

4. If indeterminate, can construct sunspot equilibria with shock φ_t
 ▶ “Ricardian FP” & active MP \Rightarrow taxes don’t matter
 ▶ “Ricardian FP” & passive MP \Rightarrow
 ▶ $\text{Corr}(\varphi_t, \text{taxes}_t) = 0$: taxes don’t matter
 ▶ $\text{Corr}(\varphi_t, \text{taxes}_t) \neq 0$: taxes matter
5. If debt grows without bound, then interest on the debt grows without bound
 - eventually, debt service will exceed nominal GDP with prob. 1
 - this can happen in many ways, all of which involve the following reasoning
 - fix output at y, real interest rate at r, and $T_t = cw_{t-1}$, $0 < c < r$
 - as $w_t \to \infty$, $T_t \to \infty$
 - but household income, $y + (1 + r)w_t \to \infty$
 - a small $c > 0$ ensures w_t grows at rate $< \beta^{-1}$
 - government can tax an unbounded amount because it is returning to households unbounded interest payments
6. CCD’s proposition falls apart if one imposes an upper bound on debt/GDP arising from...
 - distorting taxes that imply a Laffer curve
 - costs of raising revenues that increase with the revenue needs (models of tax evasion)
 - CCD’s proposition *relies* on lump-sum taxes—any proposition that requires lump-sum taxes is immediately suspicious
Canzoneri, Cumby, Diba: Ricardian equilibria more general than non-Ricardian

- if responses of taxes to liabilities is positive infinitely often—however small and infrequent—then eqm exhibits Ricardian equiv
- because fiscal response does not stabilize debt, these are potentially equilibria with unbounded debt-output ratios

Our example satisfies CCD’s assumptions, but delivers a unique eqm in set with bounded debt-output ratios

- this eqm is non-Ricardian
- important conclusions hinge on unboundedness assumption of CCD
An Analytical (Counter) Example

- Bring monetary policy into picture
 - necessary to be precise about determinacy issues
- Permit recurring regime change in MP & FP rules
- Solve for equilibrium inflation & debt processes
- What follows is *not* a general model of regime change
 - it is an example that contradicts CCD’s claims
The Model

- MIUF, constant endowment, log prefs, constant g
- Fisher equation
 \[
 \frac{1}{R_t} = \beta E_t \frac{1}{\pi_{t+1}}
 \]
- Money demand
 \[
 m_t = \left[\frac{R_t - 1}{R_t} \right]^{-1} c
 \]
- Government flow budget constraint
 \[
 \frac{M_t + B_t}{P_t} + \tau_t = g + \frac{M_{t-1} + B_{t-1}}{P_t}
 \]
- Monetary policy
 \[
 R_t = \exp (\alpha_0 + \alpha (S_t) \hat{\pi}_t + \theta_t)
 \]
- Tax policy
 \[
 \tau_t = \gamma_0 + \gamma (S_t) (b_{t-1} + m_{t-1}) + \psi_t
 \]
 (θ_t, ψ_t) exogenous policy shocks; $\hat{\pi} = \ln \pi$
The Model

- S_t an N-state Markov chain with transition probs
 \[P[S_t = j | S_{t-1} = i] = p_{ij} \]

- Define expectation error (and use Fisher equation)
 \[\eta_{t+1} = \frac{1/\pi_{t+1}}{E_t[1/\pi_{t+1}]} = \beta \frac{R_t}{\pi_{t+1}} \]

- Then the inflation process is given by
 \[\hat{\pi}_{t+1} = \alpha(S_t)\hat{\pi}_t + \alpha_0 + \theta_t - \hat{\eta}_{t+1} + \ln \beta \]

- Let $l_t = b_t + m_t$, real govt liabilities
- Use tax rule & money demand in govt budget constraint
 \[l_t = \left[\frac{R_{t-1}}{\pi_t} - \gamma(S_t) \right] l_{t-1} - \frac{R_{t-1}}{\pi_t} c + D - \psi_t \]

\[D = g - \gamma_0 \]
Solution

- Assume that
 1. \(E_t[\gamma_{t+1}] = \gamma \)
 2. \(\gamma \) satisfies \(|1/\beta - \gamma| > 1 \)
 3. Inflation process is stable in expectation (i.e., there exists a \(0 < \xi < \infty \) such that \(|E_t \pi_{t+k}| < \xi \) for all \(k \))

- (I)-(II): on average FP active; (III): on average MP passive

- Iterate on \(l \) equation and take \(E_{t-1} \) and law of iterated expectations

\[
E_{t-1} [l_{t+k}] = (1/\beta - \gamma)^{k+1} \left[l_{t-1} - c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right) \right] + c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right)
\]

Boundedness requires that \(l_{t-1} = c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right) \), which is positive if \(D/c < 1/\beta \)
Solution

- The value of η_t is obtained from the budget constraint after substituting in the value of l:

$$
\eta_t = \beta \left(1 + \gamma(S_t) \right) \left(\frac{1}{\beta} - \frac{D}{c} \right) \left(\frac{1}{\beta} - \gamma - 1 \right) \frac{1}{1 + \gamma - D/c} \\
+ \frac{\beta}{c} \left(\frac{1}{\beta} - \gamma - 1 \right) \psi_t
$$

- The unique equilibrium mapping from ψ_t and $\gamma(S_t)$ to forecast error in inflation

- η_t and π_t process yields unique solution for inflation

- Both tax shocks, ψ_t, and tax regime, $\gamma(S_t)$, matter for inflation
Concrete Example

- Two regimes, \(N = 2 \), and policy parameters take on the values

\[
\alpha(S_t) = \begin{cases}
\alpha_1 & \text{for } S_t = 1 \\
\alpha_2 & \text{for } S_t = 2
\end{cases}
\quad \gamma(S_t) = \begin{cases}
\gamma_1 & \text{for } S_t = 1 \\
\gamma_2 & \text{for } S_t = 2
\end{cases}
\]

- Suppose \(\alpha_1 \) and \(\alpha_2 \) are sufficiently small such that the inflation process is stable in expectation

- What does the assumption \(E_t \gamma_{t+1} = \gamma \) mean?

\[
E[\gamma_{t+j} | S_t = 1, \Omega_t] = \gamma_1 p_{11} + \gamma_2 (1 - p_{11}) = \gamma \\
E[\gamma_{t+j} | S_t = 2, \Omega_t] = \gamma_1 (1 - p_{22}) + \gamma_2 p_{22} \equiv \gamma \\
\Rightarrow p_{11} + p_{22} = 1
\]

- eliminates state-dependence in the probabilities
Concrete Example

- If either γ_1 or γ_2 is positive, then the model satisfies CCD's premise that taxes adjust to debt infinitely often.
- But negative tax shocks generate wealth effects that raise inflation.
- The only equilibrium with *bounded* debt is one in which Ricardian equiv breaks down: counterexample to CCD.
- Also makes the general point that short-run policy behavior—in the current regime—may not accurately describe the long-run behavior that matters for nature of the equilibrium.
Messages

1. Lump-sum taxes/transfers is a modeling device—not a description of reality
 ▶ use them to ease the analysis
 ▶ not to be taken literally
2. Always need to check if “assumptions of convenience” are essential to model’s outcomes
 ▶ if they are, then need to rethink the use of those assumptions
3. Critical results hinge on whether debt is bounded or unbounded
 ▶ unbounded debt leaves terminal condition unspecified
 ▶ admits many more solutions
4. If FP is active in the sense that surpluses respond positively to debt, but by less than the real interest rate, then...
 ▶ the unique bounded solution is one in which taxes affect aggregate demand & inflation