Discussion of
Understanding the Effects of Government Spending on Consumption

by

J. Galí, J. D. López-Salido and J. Vallés

Prepared by

Eric M. Leeper

International Research Forum on Monetary Policy

November 14-15, 2003
1 Overview

- use variant on New Keynesian model to match government-spending multipliers for output and consumption in U.S. data

- combine several frictions so higher G:
 - raises employment and real wages
 - consumption of rule-of-thumb agents increases enough to swamp decline in consumption of maximizing agents
 - sticky prices allow real wage to rise even when marginal product of labor falls
 - need a 50% RoT factor
2 Empirics

- GLV treat G as predetermined in VAR; identify responses to G with dynamic impacts of spending

- Some issues in identifying G impacts:

 1. foreknowledge: spending proposed, debated and legislated before it appears in G data

 - creates moving-average term in representation for G: shock to G not function of current and past G

 - unknown if VARs approximate this well
• if approximation poor, \(G \) innovation can be \textit{anything} (but not exogenous \(G \))

2. timing of spending: intrinsic randomness in accounting

• NIPA data on \(G \) need not coincide with timing when orders and purchases made

• confounds problems from foreknowledge

3. public-financing decision: can overturn effects of \(G \)

4. type of \(G \): productive versus unproductive

Baxter-King’s important work on theory of (3) & (4)
3 Theory: Frictions

- GLV have several important frictions
 - Calvo price setting
 - Demand-determined employment
 - Rule-of-thumb consumers (RoTers)
 - Capital adjustment costs

- RoTers and sticky prices are central
 - the kick from G works through RoTers
 - need stickiness so W/P rises even when N rises (and MP_N falls)
- consumption of RoTers is:

\[C_t^r = \frac{W_t}{P_t} N_t^r - T_t \]

- if higher \(G \) raises \(W/P \) and \(N \) sufficiently, aggregate \(C \) can rise

- result relies on:
 - asymmetry—sticky prices & flexible wages (evidence?)
 - \(MPC = 1 \) (important?)
4 Theory: Fictions

- GLV have some important fictions:
 - lump-sum taxes
 - deficit financing
 - only unproductive G
 - G single source of uncertainty
 - synchronized appropriations and spending

- problem with these “first-step” assumptions?
 - yes, according to Baxter-King (& me)
5 How Well Do They Do?

Responses to Government Spending

Data
• static multipliers: $Y(t)/G(1)$
• persistent G; cumulative multipliers

Cumulative Multipliers

Data
• compare multipliers from model and data

Static Multipliers

Data and Model
Cumulative Multipliers

Data and Model

- what are GLV’s criteria for success?
6 Other Implications

- sticky prices important to GLV’s story

- model includes a Taylor rule

 - GLV state “RoT and sticky prices necessary” to get consumption multiplier > 0

 - GLV do not discuss this, but it’s fair to examine model’s implications for inflation and nominal interest rate

 - compare to data

- expand GLV’s initial data set
Responses to Government Spending

Data

- a little different from GLV
Responses of Inflation and Nominal Rate

Data and Model
7 A Tale of Fiscal Finance

• Baxter-King showed distortionary taxes and period-by-period budget balance converts Y multipliers from > 1 to < 0

• despite lump-sum taxation GLV’s results tied to \textit{timing} of financing

• how GLV choose parameters for tax rule:

\[
t_t = \varphi_b b_t + \varphi_g g_t
\]

• paths of $\{\hat{g}_t, \hat{t}_t, \hat{b}_t\}$ due to exogenous G
• regress \hat{t}_t on \hat{b}_t, \hat{g}_t to estimate φ_b, φ_g

• fragile method of estimation: depends on
 – how G identified
 – assumptions in VAR about tax and debt policy
 – simultaneity important and recursivity inappropriate
 – makes sense only if G is sole source of uncertainty
• I amplify on Figure 7 in paper
 – fix \(\varphi_g = .12 \) and vary \(\varphi_b \)
 – fix \(\varphi_b = .30 \) and vary \(\varphi_g \)

• large consumption multipliers depend on
 – small contemporaneous tax financing
 – strong response of future taxes to debt
 – larger \(\varphi_b \) \(\Rightarrow \) weaker response to \(G_{t-k} \)

• by pushing financing into future, RoTers face small increases in current taxes, so higher \(G \) has bigger kick
Consumption Responses

Fix $\phi_g = .12$; $\phi_b = .30, .20, .10, .05$

Fix $\phi_b = .30$; $\phi_g = .12, .3, .6, .9$

Model