Adding Comments and Notes to Your PDF

To facilitate electronic transmittal of corrections, we encourage authors to utilize the comment/annotations features in Adobe Acrobat. The PDF provided has been **comment enabled**, which allows you to utilize the comment and annotation features even if using only the free Adobe Acrobat reader (see note below regarding acceptable versions). Adobe Acrobat’s Help menu provides additional details on the tools. When you open your PDF, the annotation tools are clearly shown on the tool bar (although icons may differ slightly among versions from what is shown below).

For purposes of correcting the PDF proof of your journal article, the important features to know are the following:

- **To insert text**, place your cursor at a point in text and select the Insert Text tool from the menu bar. Type your additional text in the pop-up box.

- **To replace text**, highlight the text to be changed, select the Replace Text tool from the menu bar, and type the new text in the pop-up box. Do this instead of deleting and then reinserting.

- **To delete text**, highlight the text to be deleted and press the Delete button on the keyboard.

- **Use the Sticky Note tool** to describe changes that need to be made (e.g., changes in bold, italics, or capitalization use; altering or replacing a figure) or to answer a question or approve a change from the editor. To use this feature, click on the Sticky Note tool in the menu bar and then click on a point in the PDF where you would like to make a comment. Then type your comment in the pop-up box.

- **Use the Callout tool** to point directly to changes that need to be made. Try to put the callout box in an area of white space so that you do not obscure the text.

- **Use the Highlight and Add Note to Text tool** to indicate font problems, bad breaks, and other textual inconsistencies. Select text to be changed, choose this tool, and type your comment in the pop-up box. One note can describe many changes.

- **To view a list of changes to the proof or to see a more comprehensive set of annotation tools**, select **Comment** from the menu bar.
As with hand-annotated proof corrections, the important points are to communicate changes clearly and thoroughly, to answer all queries and questions, and to provide complete information to allow us to make the necessary changes to your article so it is ready for publication. Do not use tools that incorporate changes to the text in such a way that no indication of a change is visible. Such changes will not be incorporated into the final proof.

To utilize the comments features on this PDF you will need Adobe Reader version 7 or higher. This program is freely available and can be downloaded from http://get.adobe.com/reader/
Subscriptions and Special Offers

In addition to purchasing reprints of their articles, authors may purchase an annual subscription, purchase an individual issue of the journal (at a reduced rate), or request an individual issue at no cost under special “hardship” circumstances. To place your order online, visit http://www.apa.org/pubs/journals/subscriptions.aspx; or you may fill out the order form below (including the mailing label) and send the completed form and your check or credit card information to the address listed on the order form.

For information about becoming a member of the American Psychological Association, visit http://www.apa.org/membership/index.aspx; or call the Membership Office at 1-800-374-2721.

2015 APA Journal Subscription Rates

<table>
<thead>
<tr>
<th>Journal*</th>
<th>Non-Agent Individual Rate</th>
<th>APA Member Rate</th>
<th>Journal*</th>
<th>Non-Agent Individual Rate</th>
<th>APA Member Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Psychologist</td>
<td>$399</td>
<td>$12</td>
<td>Jnl of Family Psychology</td>
<td>$215</td>
<td>$80</td>
</tr>
<tr>
<td>Behavioral Neuroscience</td>
<td>$411</td>
<td>$178</td>
<td>Jnl of Personality & Social Psychology</td>
<td>$701</td>
<td>$265</td>
</tr>
<tr>
<td>Developmental Psychology</td>
<td>$501</td>
<td>$189</td>
<td>Neuropsychology</td>
<td>$215</td>
<td>$80</td>
</tr>
<tr>
<td>Emotion</td>
<td>$149</td>
<td>$99</td>
<td>Professional Psych: Research & Practice</td>
<td>$187</td>
<td>$62</td>
</tr>
<tr>
<td>Experimental & Clinical Psychopharmacology</td>
<td>$125</td>
<td>$92</td>
<td>Psychological Assessment</td>
<td>$215</td>
<td>$99</td>
</tr>
<tr>
<td>History of Psychology</td>
<td>$128</td>
<td>$71</td>
<td>Psychological Bulletin</td>
<td>$359</td>
<td>$120</td>
</tr>
<tr>
<td>Jnl of Abnormal Psychology</td>
<td>$229</td>
<td>$99</td>
<td>Psychological Methods</td>
<td>$138</td>
<td>$62</td>
</tr>
<tr>
<td>Jnl of Applied Psychology</td>
<td>$477</td>
<td>$129</td>
<td>Psychological Review</td>
<td>$229</td>
<td>$99</td>
</tr>
<tr>
<td>Jnl of Comparative Psychology</td>
<td>$138</td>
<td>$62</td>
<td>Psychology & Aging</td>
<td>$229</td>
<td>$99</td>
</tr>
<tr>
<td>Jnl of Consulting & Clinical Psychology</td>
<td>$341</td>
<td>$149</td>
<td>Psychology of Addictive Behaviors</td>
<td>$199</td>
<td>$99</td>
</tr>
<tr>
<td>Jnl of Counseling Psychology</td>
<td>$187</td>
<td>$62</td>
<td>Psychology, Public Policy, and Law</td>
<td>$138</td>
<td>$62</td>
</tr>
<tr>
<td>Jnl of Educational Psychology</td>
<td>$229</td>
<td>$99</td>
<td>Rehabilitation Psychology</td>
<td>$138</td>
<td>$62</td>
</tr>
<tr>
<td>JEP: Animal Learning and Cognition</td>
<td>$138</td>
<td>$62</td>
<td>Clinician’s Research Digest – Adult Populations</td>
<td>$138</td>
<td>$62</td>
</tr>
<tr>
<td>JEP: General</td>
<td>$350</td>
<td>$129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEP: Human Perception, and Performance</td>
<td>$501</td>
<td>$189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEP: Learning, Memory, and Cognition</td>
<td>$501</td>
<td>$189</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For journal descriptions, see APA’s website: http://www.apa.org/pubs/journals

Instructions: Check the appropriate box, enter journal title and price information, and complete the mailing label in the right column. Enclose a check made out to the American Psychological Association, and mail it with the form to the APA Order Department or complete the credit card information below. Orders can also be placed online at http://www.apa.org/pubs/journals/subscriptions.aspx.

☐ Annual Subscription (available on January-December basis only).
To subscribe, specify calendar year of the subscription. Refer to the Subscription Rates shown above.

Journal: __________________________ Calendar year of subscription: _____________ Price: _____________

Special Offers! If you are a journal article author, you may take advantage of two Special Offers.

☐ Individual Copy. You may order individual copies of the entire issue in which your article appears. As an author, you receive a special reduced rate of $5 per copy for up to a maximum of 25 copies. No phone requests accepted.

Journal: __________________________ Vol. no.: ________ Issue no.: ________ Issue month: ________

_____ copies @ $5 a copy = $____ (order amount) + $____ (handling; see below) TOTAL enclosed: $____

Shipping & Handling Fees

<table>
<thead>
<tr>
<th>Order amount:</th>
<th>U.S. & Puerto Rico</th>
<th>Guaranteed Non-U.S.*</th>
<th>Economy Non-U.S.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to $14.99</td>
<td>$5.00</td>
<td>$50.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>$15 to $59.99</td>
<td>$6.00</td>
<td>$75.00</td>
<td>$16.00</td>
</tr>
<tr>
<td>$60.00+</td>
<td>10% Order Total</td>
<td>$125.00</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

*International rates for guaranteed service are estimates.

**I agree that international economy service is non-guaranteed and does not provide tracking or date/time specific delivery. Delivery time for this level of service can take up to 8 weeks. If this level of service is selected, APA will not be held liable and will not honor any claims for undelivered, delayed, or lost shipments.

☐ Hardship Request. If you do not have a personal subscription to the journal and you do not have access to an institutional or departmental subscription copy, you may obtain a single copy of the issue in which your article appears at no cost by filing out the information below.

Journal: __________________________ Vol. no.: ________ Issue no.: ________ Issue month: ________

CREDIT CARD PAYMENT

☐ VISA ☐ MASTERCARD ☐ AMERICAN EXPRESS

CARD NUMBER __________________________
Expire Date ________ Signature __________________________

PRINT CLEARLY – THIS IS YOUR MAILING LABEL

<table>
<thead>
<tr>
<th>SHIP TO:</th>
<th>Phone No. __________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name __________</td>
<td>Address __________</td>
</tr>
<tr>
<td>City _______ State ______ Zip ______</td>
<td></td>
</tr>
<tr>
<td>Expedited Service (enter service required): __________________________</td>
<td></td>
</tr>
</tbody>
</table>

Send the completed form and your check, made out to the American Psychological Association, or your credit card information to:

APA Order Department
750 First Street, NE
Washington, DC 20002-4242

All orders must be prepaid. Allow 4-6 weeks after the journal is published for delivery of a single copy or the first copy of a subscription.
A Computational Model of the Attention Process in Risky Choice

Joseph G. Johnson
Miami University and Hanse Wissenschaftskolleg

Jerome R. Busemeyer
Indiana University

A key component of most decision making theories is the decision weight that reflects the importance of consequences when evaluating an action. In algebraic models such as prospect theory or configural weight theories, these are explicit value multipliers with functional forms fit to empirical data. In process models such as decision field theory, elimination-by-aspects, or decision-by-sampling, they represent the distribution of attention about which simplifying assumptions are often made. Still, little is known about the cognitive processes that produce these weights. The current work presents a computational model that derives decision weights from elementary attention processing mechanisms. The basic idea is that a decision weight corresponds to the proportion of times an outcome is predicted to occur when an action is mentally simulated. We demonstrate the model’s success by (a) coherently explaining several robust phenomena with a single set of parameters, including some that utility theories cannot; (b) fitting common functional forms used in algebraic models such as prospect theory, allowing for cognitive processing reinterpretations of their parameters; and (c) quantitatively fitting the model to extensive data sets on choice and pricing.

Keywords: Allais paradox, branch independence, probability weighting, risky decision making, stochastic dominance, weighting function

One characterization of recent theoretical work in judgment and decision making is the shift from algebraic, outcome-based models of behavior to those that attempt to more directly specify the underlying cognitive and emotional processes that produce these behaviors (see Johnson & Busemeyer, 2010, for a review). For the most part, these models have focused on the deliberation and choice processes (e.g., Brandstätter, Gigerenzer, & Hertwig, 2006; Busemeyer & Townsend, 1993; Diederich, 1997; Stewart, Chater, & Brown, 2006). In the current work, we extend this process-oriented focus to the notion of decision weighting, or the process of evaluating the relative impact of different choice attributes on the subsequent deliberation process.

The contribution of the current work can be considered as fulfilling a missing component of existing process theories of decision making, For example, Busemeyer and Townsend (1993) make simplifying assumptions about decision weights and how they influence attentional processes during deliberation. Diederich (1997) develops similar models that allow for more formal specification about such transitions in attention across attributes. However, these models do not detail the source of these decision weights or the exact patterns of attention shifting. Rather, they treat these constructs as parameters of the model from which the resulting evaluation and choice processes can be predicted. Here, we will present a computational model that specifies simple cognitive processes that use stimulus information and individual characteristics to determine these attention weights.
weights over time. Additionally, we will relate the patterns of attention produced by this model to classical notions of decision weight or probability weighting present in algebraic theories of choice (e.g., Birnbaum, 2008; Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).

Representation of Risky Decision Making and Typical Approach

An introduction to the applications and the notation that we use is required before we present our model. For the past 60 years or so, decision theorists have examined questions about risky decision making using simple gambles.\(^1\) For example, suppose you had a choice between two options:

- Option A: Win $10 for sure.
- Option B: Win $100 with 1/10 chance, or $5 with 4/10 chances, or nothing with 5/10 chances.

More generally, consider a gamble with \(n\) outcomes that produces outcome \(x_1\) with probability \(p_1\), outcome \(x_2\) with probability \(p_2\), and so on. For brevity, we will denote this gamble as \(G = (x_1, p_1; x_2, p_2; \ldots; x_n, p_n)\), where \(x_1 < x_2 < \ldots < x_n\). So Option B above would be expressed as \((0, 0.50); (5, 0.40); (100, 0.10)\). The question of central concern for the current work is how much weight should be given to each of the three payoffs for option B. One reasonable approach is to weight each payoff by its probability, and then sum the three weighted outcomes. In other words, the probability of an outcome determines the weight given to that outcome. This results in the expected value (EV) rule for decision making: EV(B\(_0\)) = \((.5) \cdot (50) + (.4) \cdot (40) + (.1) \cdot (10) = 12\), which is better than the certain $10 offered by A, and so this EV rule would lead one to choose the option B over A.

Decades of research have shown that the EV rule, although in some sense rational, does not accurately describe or predict the choices people actually make when presented with choices such as that between A and B. In response, theorists have focused on modifications to this basic framework; notably, to the subjective evaluations of outcomes and the weights placed on these outcomes. That is, they have proposed transformations of the outcome and/or probability information, while retaining the assumption of a multiplicative combination of these transformed values, to better describe choices (e.g., Birnbaum & McIntosh, 1996; Edwards, 1962; Kahneman & Tversky, 1979; Tversky & Kahneman, 1992; Quiggin, 1992). Generally, this can be expressed by defining the weighted expected utility of a gamble \(G\) as follows:

\[
\text{WEU}(G) = w_G(p_1, x_1) \cdot u(x_1) + w_G(p_2, x_2) \cdot u(x_2) + \ldots + w_G(p_n, x_n) \cdot u(x_n) \tag{1}
\]

Here \(w_G(p, x_i)\) refers to the weight given to outcome \(x_i\), which may depend on the probability \(p_i\) of that outcome and/or the value of that outcome as described below. The key difference among various approaches within this algebraic framework has been in their claims about forms of \(w(\cdot)\) and \(u(\cdot)\), often referred to as the probability weighting and value functions, respectively. (Hereafter we will suppress the subscript for the gamble \(G\) in the weighting function to reduce notation.) It seems that there are functional forms that can explain most of the empirical results from this research program (see Birnbaum, 2008). Although we do not think algebraic maximization is an accurate depiction of human decision making, one way to connect the current work to this vast literature is to consider how our model of attentional processes in risky decision making could approximate the decision weights for use in Equation 1; we return to this later.

A Process-Oriented Approach to Risky Decision Making

Several contemporary theories of risky decision making have adopted a process-based explanation of risky decision making. That is, they do not suppose that people perform probability and value transformations, and then calculate values according to Equation 1. For example, some theorists assume that people use simple rules (Brandstätter et al., 2006; Thorngate, \(^1\) Although we acknowledge arguments by Goldstein and Weber (1995), among others, about the dangers associated with this “gambling metaphor,” we nevertheless adopt it in the current work to align with the relevant theory and literature. A detailed assessment of the adequacy of the metaphor is far beyond the scope of the current work.
1980) when making risky choices. Here, we adopt an approach that attempts to directly model the information processing assumed to underlie risky choices.

In particular, we advocate the use of a sequential sampling framework to model and understand decision making. This framework has been very useful in explaining not only risky choice (Busemeyer & Townsend, 1993) but also other aspects of decision making as well (e.g., Berkowitsch, Scheibehenne, & Rieskamp, 2014; Diederich, 2003; Hotaling & Busemeyer, 2012; Johnson & Busemeyer, 2005; Rieskamp, 2008; Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2004; Bhatia, 2013; Trueblood, Brown, Heathcote, 2014). Although the details of the model specification depend on the application, this approach in general can be described as follows. First, a decision maker’s attention shifts over time across various aspects of the decision options. Depending on the momentary focus, the attended information is used to perform an evaluation of the associated options. Over time, these momentary evaluations change as attention shifts across different attributes, some of which may favor an option and some of which may be disadvantageous. These momentary evaluations are accumulated over time to form an evolving preference state relating the preference for each possible choice option. A decision is made when sufficiently strong preference is accumulated to favor one option over the others.

This approach is not only successful at accounting for several robust decision phenomena (e.g., Berkowitsch et al., 2014; Busemeyer, Jesup, Johnson, & Townsend, 2006; Busemeyer & Townsend, 1993; Diederich, 2003; Diederich & Busemeyer, 1999; Jessup, Bishara, & Busemeyer, 2008; Johnson & Busemeyer, 2005), but in making novel predictions about response times and other processing variables about which utility-based theories are silent. However, as Busemeyer and Townsend (1993) have pointed out, these models can also mimic the predictions of utility-based models, and may have parameters for which there are direct analogues in the utility-based algebraic representations (see also Lee & Cummins, 2004). For example, with the appropriate assumptions, the average rate at which options proceed toward the decision threshold is directly related to the utility difference between options when each is calculated according to Equation 1. In this manner, the model can faithfully reproduce the choice predictions of utility-based models even though they never assume there is any calculation similar to Equation 1, and no integration of probability weighting and outcome information. Rather, this result is obtained if the relative attention to outcomes over the course of the deliberation process described above is equal to the decision weights, \(w(p, x) \), and the outcomes are evaluated according to \(u(x) \).

In empirical applications, this assumption about relative attention has been sufficient to explain the observed results, even when an identity function has been assumed where \(w(p, x) = p_i \) (e.g., Scheibehenne, Rieskamp, & González-Vallejo, 2009). Furthermore, for mathematical tractability, it is also usually assumed that attention shifts stochastically according to a zero-order process based on these probabilities (but see Diederich, 1997). Although these basic assumptions have not deterred the basic model from achieving considerable success, the time has come to more accurately develop the attentional model in the sequential sampling framework. We turn now to meeting this goal.

A Process Model of Attention in Risky Choice

For clarity, we will start by reiterating exactly what we are trying to accomplish in this section. Recall that the sequential sampling approach assumes that attention at each moment, \(t \), is directed toward one of the features of each choice option, and at that moment the feature is evaluated in order to update the preference state. For gambles in a risky choice paradigm, we assume that the different features consist of the different gamble outcomes. The goal, then, is to determine for each moment \(t \), which outcome is selected as the focus of attention for evaluative processing.

The basic idea we formalize in the current model is that the decision maker tries to anticipate or predict what outcomes will be generated by each gamble. These predictions are based on mental simulations of the random device actually used to generate outcomes (akin to the “simulation heuristic” of Kahneman & Tversky, 1982). For each of these mental simulations, the predicted outcome is then the focus
of attention for the corresponding gamble during moment t. We formally model which outcome is predicted for each of these mental simulations.

Consider for example, a decision maker faced with the following choice pair:

A: ($12, .10; $90, .05; $96, .85),

B: ($12, .05; $14, .05; $96, .90).

In a typical experiment involving these independent gambles, participants might be informed that each gamble is represented by a separate urn, bingo cage, and so forth, and that the outcomes of a gamble are randomly sampled therefrom. Using this device, the decision maker makes separate and statistically independent predictions for each gamble. Initially, we focus on the problem of predicting a three outcome gamble such as A. If we could directly monitor the decision maker’s attention, then we imagine that the process of generating a prediction would operate in the following way.

The decision maker first considers or “looks” at one of the outcomes. If the outcomes are processed from lowest to highest, then perhaps 12 is considered first. There is some small chance the person will even select this outcome as a prediction on this mental play and predict this outcome to occur. However the probability of the 12 outcome is rather low, so in the next moment, the person is more likely to “look” at the next higher ranked outcome, which is the 90 outcome. At this point, the person may predict the 90 outcome (which is again unlikely because of its low probability), or move back to reconsider the 12 outcome, or move up to consider the 96 outcome. Suppose the latter occurs, then the 96 outcome could be selected as a prediction (which is likely considering its high probability), or the person could move back down to consider the 90 outcome, and so on. Ultimately, this process would lead the person to predict one of the three outcomes 12, 90, or 96 and finish the prediction process for this time step in the decision model, t. Whichever outcome is predicted (say, 96), then the evaluation of this outcome (say, $u(96)$) enters the decision model as the momentary evaluation of this option. Then, the above prediction process begins anew for the next moment ($t + 1$).

Markov Model

Formally, we can model this attention process as a Markov chain model (Karlin & Taylor, 1975). Figure 1 and the derivation here will focus on the Markov model for three outcomes $0 \leq x_1 \leq x_2 \leq x_3$, without loss of generality. The model has three states, one for each possible outcome that can be sampled from the random device used to generate outcomes. The attention process starts by “looking” at one of these three states. Whereas in the example we assumed initial consideration of the lowest outcome, more generally we assume the probability of starting in state x_i is denoted $z_i \geq 0$ where $z_1 + z_2 + z_3 = 1$. These three probabilities are called the initial state probabilities, which are represented by the downward pointing arrows in Figure 1.3

Once the attention process is located at a particular state, x_i, one of three mutually exclusive and exhaustive events can happen: (E1) a prediction could be made for that state, that is, predict x_i and stop, which is a downward transition from a state in Figure 1; or (E2) no prediction occurs, but attention remains focused on the same state, that is, dwell on x_i for another time step, which is the inner return loop shown in Figure 1, or finally (E3) attention moves to another state. Note that for (E3), we make a random walk type of assumption that transitions may occur only to adjacent states, either one step to the right from state x_1, one step to the left from x_3 (generally, x_n), or one step in either direction from x_2 (generally, any x_i for $i \neq 1, n$). One can of course make other transition

2 We are assuming that a single prediction takes place during each moment t in the choice model. Obviously, generating each of these predictions is not instantaneous but also develops according to the dynamics detailed in this section. It may be useful to keep this distinction between two different time scales in mind; see also Appendix A.

3 To minimize the number of free parameters, in the current applications the initial state probabilities are generated from a single free parameter denoted ζ, with $0 \leq \zeta \leq 1$. This is achieved by defining the three initial state probabilities as follows: $z_1 = (1 - \zeta)^2$, $z_2 = 2 \cdot \zeta \cdot (1 - \zeta)$, and, $z_3 = \zeta^2$. For example, if $\zeta = 0$, then $z_1 = 1$, $z_2 = z_3 = 0$, and the process always starts with the lowest outcome; if $\zeta = 1$, then $z_1 = z_2 = 0$ and $z_3 = 1$, and the process always starts with the highest outcome; and if $\zeta = .5$, then $z_1 = .125$, $z_2 = .50$, and $z_3 = .375$, and the process is most likely to start with middle outcome. A wide variety of initial distributions can then be generated using a single initial state parameter, ζ.
assumptions, but this random walk process provides a mechanism for drifting up and down the utility scale. This mechanism is similar to other perturbation models, such as those producing systematic errors in order and position information in short term memory (Estes, 1972).

To fully specify the model, we must determine the probability of each event. First, the probability of event E1 is denoted \(\pi_r \) in Figure 1, which we will assume to be equal to each outcome’s probability, \(\pi_r = p_r \). In other words, given that an outcome is being considered, the probability of it being predicted is simply equal to its objective probability (similar to the probability matching law for prediction; Estes, 1959). For Gamble A, this means \(\pi_r^* = .10 \), \(\pi_r^* = .05 \), and \(\pi_r^* = .85 \). Next, it follows that considering an outcome will not produce a prediction with probability \(1 - \pi_r \), in which case we assume there is a constant “dwell rate” \(0 \leq \beta \leq 1 \) to describe event E2. This is the probability that this person’s attention remains focused on outcome \(x_i \) for another time step; denoted \(\pi_{ii} \) in Figure 1, and equal to \(\pi_{ii} = \beta \cdot (1 - \pi_r) \). Finally, the probability for event E3 depends on whether attention is focused on one of the end states or an intermediate state. If attention is focused on the lowest payoff \(x_1 \), then the probability of shifting focus up to \(x_2 \) must equal \(\pi_{12} = (1 - \pi_{1r}) \cdot (1 - \beta) \); similarly, if attention is focused on the highest payoff \(x_3 \), then the probability of shifting focus down to \(x_2 \) must equal \(\pi_{32} = (1 - \pi_{3r}) \cdot (1 - \beta) \). These are both required because the three events are mutually exclusive and exhaustive, so the transition probabilities out of a state must sum to one. If attention is focused on an intermediate state, \(x_2 \) in Figure 1, then the probability of transitioning to the adjacent state equals \(\pi_{21} = \pi_{23} = (1 - \pi_{2r}) \cdot (1 - \beta)/2 \). That is, we assume that attention is equally likely to step up or down the outcome rank. Generally, \(\pi_{i,j-1} = \pi_{i,j+1} = (1 - \pi_{ir}) \cdot (1 - \beta)/2 \), for all \(i \neq 1, n \). In sum, all of the state transitions are computed from the objective outcome probabilities \((p_1, p_2, \ldots, p_n) \) and a single parameter, the dwell rate \(\beta \).

Deriving Model Predictions

It is straightforward to directly compute the final probabilities of predicting each outcome (i.e., the attention weights) from the Markov model using simple matrix operations. That is, we can assume that the process described above serves as an ongoing attentional input to the decision model, but simplify the resulting predictions by deriving the expected attention weights at each moment \(t \) in that model. We continue to derive these formulas using the three-outcome case for illustrative purposes.

First, we form an initial state probability row vector as \(\mathbf{Z} = [z_1 \ z_2 \ z_3] \) containing the probability of first considering each outcome. Second, we form a transient matrix \(\mathbf{Q} \) and an absorbing matrix \(\mathbf{R} \) from the outcome probabilities \((p_1, p_2, p_3) \) and the dwell rate \(\beta \):

\[
\mathbf{Q} = \begin{bmatrix}
\beta(1-p_1) & (1-\beta)(1-p_1) & 0 \\
(1-\beta)(1-p_2)/2 & \beta(1-p_2) & (1-\beta)(1-p_2)/2 \\
0 & (1-\beta)(1-p_3) & \beta(1-p_3)
\end{bmatrix},
\]

\[
\mathbf{R} = \begin{bmatrix}
p_1 & 0 & 0 \\
0 & p_2 & 0 \\
0 & 0 & p_3
\end{bmatrix}
\]

In this case, the attention weights can then be easily computed from the Markov model by the simple matrix equation (see Karlin & Taylor, 1975):

\[
\mathbf{W} = \mathbf{Z} \cdot (\mathbf{I} - \mathbf{Q})^{-1} \cdot \mathbf{R}
\]

(2)

The matrix \(\mathbf{I} \) is a 3 × 3 identity matrix (ones on the diagonals, zeroes on the off-diagonals),
and \((I - Q)^{-1}\) is the inverse of the matrix \((I - Q)\). The probabilities of predicting each of the three outcomes (i.e., the attention weights) are contained in the row vector \(W = [w_1, w_2, w_3]\). For example, if we apply this model to gamble A with \(z_1 = 1\) and \(\beta = .70\), we obtain the following:

\[
W(\$12) = [w_1(\$12), w_2(\$12), w_3(\$12)] = [(.7)(.9), (.3)(.9), 0]
\]

\[
- [1 - Q] = \begin{bmatrix} (.7), (9) & (.3), (9) & 0 \\ (.7), (9) & (.3), (9) & 0 \\ 0 & (.3), (15) & (.7), (15) \end{bmatrix} = [0.10, 0.05, 0.85]
\]

\[
W(\$96) = [.40, .16, .44].
\]

It is interesting to note that if we use the typical parameters from Birnbaum's (2008) TAX model (\(\delta = 1\) and \(\pi(p) = p^2\)), then the TAX model produces similar decision weights for gamble A: \(w(\$12) = .37, w(\$90) = \).26, \(w(\$96) = .37\).

Equation 2 easily can be extended for use with any arbitrary number of outcomes, \(n\) (see Appendix B for details). For the simple but important case of binary outcomes, \(n = 2\), then for the larger of the two outcomes Equation 2 reduces to (see Appendix B):

\[
w_2 = \frac{(1 - \beta)z_1p_2 + (1 - p_2)\beta z_2p_2}{(1 - \beta)p_1 + (1 - \beta)p_2 + \beta p_1p_2} (3)
\]

Note that attention weights sum to one, so the weight for the other (lower) outcome is \(w_1 = (1 - w_2)\). Also, the initial probabilities must sum to one, so we set \(z_1 = (1 - z)\) and \(z_2 = z\). Therefore, the model has only two free parameters (\(\beta\) and \(z\)). Even when there are more than three outcomes, we can compute all of the initial state probabilities in \(Z\) from a single free parameter, such as by assuming that this initial probability has a binomial distribution (see Footnote 3 and Appendix B for details). In sum, the general model for \(n\) outcomes still has only two free parameters, the initial state parameter \(z\) and the dwell rate parameter \(\beta\).

Psychological Interpretation of Parameters

We stress that never do we assume that Equations 2 and 3 are ever computed by the decision maker. Instead, these equations are the mathematically expected consequences of the attention process summarized in Figure 1 at any moment \(t\) in the decision process. There are only two free parameters in the attention process model: \(z\) determines the initial distribution \(Z\), and \(\beta\) determines the tendency to dwell on a particular outcome or state. Individual differences in the initial state parameter, \(z\), and/or dwelling probability \(\beta\) can produce various mappings of probabilities to decision weights. This is important because individuals actually display a very wide range of decision weight patterns (see Luce, 2000, Ch. 3).

Conceptually, one can think of the attention process as undergoing a "search," where the initial probabilities \(z_1\) affect where the search starts, the dwelling probability \(\beta\) represents how resistant the search is to move along the outcome scale, and \(p_1\) represents the tendency to stop the search with a prediction. Thus, correspondence between an outcome's objective probability and its decision weight depends on the likelihood that the process starts out considering the outcome. Simply put, the process is more likely to terminate close to where it started than far from where it started, all else being equal. Note that this general principle is in line with research on "coherent arbitrariness" that shows the influence of (even irrelevant) anchors on decision processes (e.g., Ariely, Loewenstein, & Prelec, 2003). Furthermore, this is magnified if the process is likely to dwell (resistant to adjustment). This property of the model follows from the random walk arrangement of transition probabilities.

This feature of the model is illustrated in Figure 2, which plots the decision weight given to the higher outcome in a binary gamble as a function of the two free parameters. In Figure 2a, the process is assumed to always start at the lower outcome, \(z_1 = 1\); in this case, the model produces consistent underweighting of the higher outcome, where the marginal effect (curvature) increases with increased dwelling (\(\beta\)). In contrast, if the process always begins with consideration of the higher outcome (\(z_2 = 1, Figure 2b\)), then there is global overweighting of this outcome, with a similar dependence on \(\beta\) for the marginal effect. Assuming a uniform distribution across initial states (\(z_1 = z_2 = .5\), Figure 2c), the model's qualitative behavior depends predictably on the dwelling parameter. Specifically, for \(\beta \ll 0.5\), the model exhibits overweighting of small to moderate probabilities, and underweighting of moderate to large probabilities; for \(\beta \gg 0.5\), this trend is reversed;
and linear weighting is produced when $\beta = 0.5$. Finally, in Figure 2d, the initial probabilities are set equal to the objective outcome probabilities ($z_i = p_i$), and the model exhibits mild underweighting of small to moderate probabilities (because the process is less likely to start with small probabilities when $z_i = p_i$) and over-weighting of moderate to large probabilities, with minimal dependence on β (Figure 2d).

Empirically, the existing evidence is mixed regarding which shape of probability weighting is most plausible; this may also depend on the specific task and stimuli. Early work (Preston & Baratta, 1948) and recent studies (Gonzalez & Wu, 1999) suggest the inverse S-shape, whereas other evidence suggests either a strictly concave (Edwards, 1955; Tversky, 1967) or strictly convex (Kahneman & Tversky, 1979) form. Stott (2006) conducted a comprehensive examination of various choice, value, and decision weighting functions including a review of previous literature as well as a simultaneous comparison of 256 functional combinations; his results seem to generally support the inverse S shape. In a similar approach, Booij, van Praag, and van de

Figure 2. Representative plots of the process weighting model. Plots show value of the weight given to the larger outcome, $w(p_n)$ against p_n for $n = 2$, where different lines represent different values of β, and different panels reflect different assumptions about the initial state of the model. (a) Deterministic starting with the lower outcome, $z_1 = 1$, $z_2 = 0$. (b) Deterministic starting with the highest outcome, $z_2 = 1$, $z_1 = 0$. (c) Uniform starting distribution, $z_i = 1/n = \frac{1}{2}$, for $i = 1, 2$; and (d) Starting probabilities equal to objective probabilities, $z_i = p_i = \Pr[x_i]$, for $i = 1, 2$.

4 It is interesting to note a strong, testable prediction of the model in these last two cases: that an inflection point always occurs at an objective probability $p = .5$ for two-outcome gambles. However, this does not necessarily require the “fixed point” of the model to equal 0.5 (all $p < .5$ are overweighted and all $p > .5$ are underweighted).
Connections to Algebraic Utility Models

To be clear, our motivation was to provide a dynamic processing mechanism for the shifting attention assumed in sequential sampling models of risky choice such as the decision field theory of Busemeyer and Townsend (DFT; Busemeyer & Townsend, 1993). On the one hand, this mechanism represents a “missing” component used to determine the attention weights for deriving predictions in DFT or other process models such as decision by sampling theory (Stewart et al., 2006). On the other hand, this mechanism could be used to determine the decision weights that are inserted into weighted utility rules of risky decisions, thereby providing a cognitive processing account of the decision weighting functions typically used in those theories. Therefore, we can easily conceive of the attention process as a general explanation for decision weights, which could be used in various types of decision rules or choice mechanisms. For example, the weights produced by the model could easily be substituted for each \(w(p, x) \) in Equation 1.

In this context, it may be interesting to note that this attention process model can in fact reproduce the trends associated with several popular functions relating objective probability \(p \) to probability weight \(w(p, x) \); see Figure 3 for characteristic examples. Most prominent forms of probability weighting functions can be characterized by two key psychological properties, here called discriminability and attractiveness, following Gonzalez and Wu (1999; Tversky & Kahneman, 1992; Tversky & Wakker, 1995). Discriminability refers to the marginal effects of probability, or sensitivity to increases or decreases in probability. This property suggests greater slope or curvature in weighting functions. Attractiveness refers to global tendencies of the weight applied to probabilities, such that greater attractiveness corresponds to assignment of higher weights. This property suggests greater intercepts or elevation of weighting functions.

Generally, these two psychological properties can be modeled by two parameters. For example, some empirical applications have used the following two-parameter function (e.g., Lattimore et al., 1992; Tversky & Fox, 1995):

\[
w(p, x) = \frac{\beta p^\gamma}{\beta p^\gamma + (1 - p)^\gamma} \tag{4}
\]

Another two-parameter form has been offered by Prelec (1998; Eq. 3.2), which has also been shown to work well in empirical applications (e.g., Sneddon & Luce, 2001):

\[
w(p, x) = e^{-\beta (\log(p))^\gamma} \tag{5}
\]

Finally, it is possible to use only one parameter in defining a probability weighting function that still exhibits the shape of Equations 4 and 5. In fact, a special form of Equation 5, with \(\beta = 1.0 \), seemed to be the most successful function based on the work of Stott (2006). Another one-parameter form was proposed in the original cumulative prospect theory paper (Tversky & Kahneman, 1992) and has also been used quite extensively (e.g., Camerer & Ho, 1994; Wu & Gonzalez, 1996):

\[
w(p, x) = \frac{p^\gamma}{(p^\gamma - (1 - p)^\gamma)^{\frac{1}{\gamma}}} \tag{6}
\]

Of course, the process model can reproduce decision weights calculated from Equations 4 through 6 in a straightforward manner. If we assume \(\beta = 1 \), and then set \(z_1 \) equal to \(w(p_1, x_1) \) from any probability weighting function, the resulting decision weights will correspond exactly to the given function. Our goal here, however, is to go beyond these trivial mappings and instead to see what psychological interpretations of our parameters correspond to resultant weights from other functions. To do so, we determined the value of \(z_1 \) and \(\beta \) (where \(z_2 = 1 - z_1 \)) that minimized the squared residuals between the weight \(w_2 \) to the higher outcome in binary gambles predicted by our process model and the comparison model (see Appendix C for details regarding the model fitting procedures).

5 Some researchers, following Quiggin (1992), characterize probability weighting in terms of optimism (overweighting) and pessimism (underweighting).
Figure 3 shows the fit of the process model to the weights generated from Equation 4 using the parameters that were reported to best fit the median data by Gonzalez and Wu (1999), a special form of Equation 5 with \(\beta = 1 \), and Equation 6 using the original parameter estimate from Tversky and Kahneman (1992).

There is not a great deal of variance across the process model parameters that produce the three plots shown in Figure 3—not surprising when one considers the similarity of the algebraic forms. The probability of attending to the lower outcome first, \(z_1 \), ranged from 0.40 to 0.45; the value of \(\beta \) had a slightly larger range, from 0.79 to 0.91. In other words, the process model could very closely reproduce each and every of the algebraic functions by assuming a slight bias of initial attention to the higher outcome, and a moderately high probability of dwelling on a given outcome when it is considered.

In summary, we have shown that our process model can reproduce the weights achieved through popular algebraic weighting functions. On one hand, this suggests it still makes perfect sense to simply use algebraic “resultant weights” for modeling simplicity in research applications. That is, although we describe a process, if it mimics other algebraic accounts and supports their assumptions about resultant decision weights, then in practice it is still justifiable to use the algebraically derived weights. On the other hand, however, perhaps our approach also accounts for data and/or phenomena that the algebraic equations cannot (and/or more parsimoniously accounts for similar data). To evaluate this possibility, we
next consider some formal empirical applications of the model.

Applications of the Attention Weight Process Model to Empirical Findings

The evolution of algebraic utility-based decision weighting (or probability weighting) functions has been driven largely by their ability to account for a number of puzzling phenomena in people’s decision making that questioned the simple EV rule as an adequate descriptive model. As a first empirical assessment of our process model, it should be able to account for these robust phenomena. Although we obviously cannot apply the model in a single report to all possible decision phenomena, we choose here to focus on some of the most well-studied phenomena from the past 60 years: the common consequence and common ratio effects, and violations of branch independence and stochastic dominance.

Common Consequence and Common Ratio Effects

Consider a choice between the following gambles (M stands for million):

\[A_1: (\$1M, 1.0) \]
\[B_1: (\$0M, .01; \$1M, .89; \$5M, .10) \]

A person may prefer option \(A_1 \) because he or she is sure to get a million dollars, and option \(B_1 \) has some risk of producing nothing. This result alone is not peculiar; it simply describes risk aversion. However, the independence and cancellation axioms of many utility theories require that the choice between \(A_1 \) and \(B_1 \) above is consistent with the choice between \(A_1^* \) and \(B_1^* \) below (see Busemeyer & Johnson, 2008, for an overview):

\[A_1^*: (\$0M, .89; \$1M, .11) = (\$0M, .89; \$1M, .01; \$1M, .10) \]
\[B_1^*: (\$0M, .90; \$5M, .10) = (\$0M, .89; \$0M, .01; \$5M, .10) \]

Note that the gambles on the left hand sides of the equal signs for \(A_1^* \) and \(B_1^* \) are logically equivalent (according to the rules of probability) to the gambles on the right hand side. Allow us to rewrite gamble \(A_1 \) to make comparisons clear:

\[A_1: (\$1M, 1.0) = (\$1M, .01; \$1M, .89; \$1M, .10) \]

Viewing the right hand sides, we see that all we did across the pairs of gambles \{\(A_1, B_1 \)\} and \{\(A_1^*, B_1^* \)\} is change the $1M outcome with probability .89 (common between \(A_1 \) and \(B_1 \)) to a $0M outcome with probability .89 (common between \(A_1^* \) and \(B_1^* \)). According to the EU rule, these common outcomes with a common probability just cancel out in the comparison, and so the independence and cancellation axioms require that (a) if a person chooses \(A_1 \) over \(B_1 \) then that person must also choose \(A_1^* \) over \(B_1^* \); (b) alternatively, if a person chooses \(B_1 \) over \(A_1 \) then that person must also choose \(B_1^* \) over \(A_1^* \).

Allais (1953) actually invented the gambles shown above, and when he presented those on the left hand sides, he generally found that people chose \(A_1 \) over \(B_1 \) but they switched and chose \(B_1^* \) over \(A_1^* \), thus violating the independence axiom. This initial research was replicated and extended later by Kahneman and Tversky (1979), who called this finding the common consequence effect.

Another example of a violation of the independence axiom is the common ratio effect (Allais, 1953; Kahneman & Tversky, 1979). First consider a choice between the following:

\[A_2: (\$0M, 0; \$3M, 1.0) \]
\[B_2: (\$0M, .20; \$5M, .80). \]

Most people choose \(A_2 \) over \(B_2 \), which again is fine with utility theory. But according to the independence axiom, this implies that \(A_2^* \) should be chosen over \(B_2^* \) below:

\[A_2^*: (\$0M, .80; \$3M, .20) = (A_2, .20; 0, .80) \]
\[B_2^*: (\$0M, .84; \$5M, .16) = (B_2, .20; 0, .80). \]

Note that \(A_2^* \) is just a .20 chance to play \(A_2 \) otherwise nothing; and \(B_2^* \) is also a .20 chance to play \(B_2 \) otherwise nothing. Again, the common consequence of 0 with probability .80 cancels out in the comparison of \(A_2^* \) with \(B_2^* \), and the common probability .20 divides out in this comparison. So the choice between \(A_2 \) and \(B_2 \) must be consistent with the choice between \(A_2^* \) and \(B_2^* \). In contrast, Allais (1953) and Kahneman and Tversky (1979) found that most people prefer \(A_2 \) over \(B_2 \) and yet they also choose \(B_2^* \) over \(A_2^* \), violating the independence axiom (again when presented in the format on the left-hand side of the equal sign).
To examine very clearly the ability of the attention process model to explain these qualitative patterns, we use a very stringent protocol to generate the predictions. First, we use a single set of parameters to derive predictions for all of the gambles, rather than allowing free parameters for each gamble or application. Specifically, we assume that the process always begins with the lowest outcome ($z_1 = 1$, or $z = 0$ per Footnote 3), and we use a moderate level for the dwelling probability ($\beta = 0.70$). Second, rather than relying on the DFT choice model which we theoretically endorse, we want to show that the attention model alone is accountable for predicting the results. Therefore, we based the choices on a simple weighted utility formula from Equation 1, where $w(x_i)$ is now computed from Equation 2. Third, we put the full explanatory burden on the attention weighting process model by using a strictly linear utility assumption, $u(x) = x$. By using this simple protocol, we show that our proposed weighting process—rather than parameter flexibility, the DFT choice mechanism, or utility valuation—can account for the results.

Some justification for starting with the lowest outcome is needed. This tends to increase the decision weights for lower rank outcomes above their objective probabilities (see Figure 2). First of all, similar results are obtained if z is low but not exactly zero, and setting $z = 0$ provides the simplest example. Second, we could introduce a risk aversion utility parameter (e.g., $u(x) = x^{\alpha}$, $\alpha < 1$), and then we would not need the initial state to start at such a low value. However, we want to avoid adding extra utility parameters, and so z needs to be low to produce some risk aversion. Third, this is consistent with the hypothesis of other popular models, such as the TAX model (Birnbaum, 2008) assumption that the lowest outcome takes attention away from higher outcomes, or that decision makers start by comparing the lowest payoffs in the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006).

As can be seen in Table 1, the process model correctly predicts each of the pairwise choices that give rise to the common consequence and common ratio effects. That is, the inconsistent choice pattern (A, B*) is predicted for each pair of choices. Table 1 also gives the predicted weights in each situation.

Table 1

<table>
<thead>
<tr>
<th>Gamble</th>
<th>WEU</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common consequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>1.00</td>
<td>.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>.99</td>
<td>.03</td>
<td>.96</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>A'1</td>
<td>.01</td>
<td>.99</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'1</td>
<td>.04</td>
<td>.99</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>3.00</td>
<td>.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>2.64</td>
<td>.47</td>
<td>.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A'2</td>
<td>.10</td>
<td>.97</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B'2</td>
<td>.11</td>
<td>.98</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branch independence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>15.61</td>
<td>.68</td>
<td>.27</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>14.94</td>
<td>.68</td>
<td>.27</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>A'3</td>
<td>33.61</td>
<td>.68</td>
<td>.27</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>B'3</td>
<td>39.41</td>
<td>.68</td>
<td>.27</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Stochastic dominance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>61.77</td>
<td>.40</td>
<td>.16</td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>59.52</td>
<td>.24</td>
<td>.20</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>A'4</td>
<td>49.19</td>
<td>.27</td>
<td>.28</td>
<td>.12</td>
<td>.33</td>
</tr>
<tr>
<td>B'4</td>
<td>50.47</td>
<td>.27</td>
<td>.28</td>
<td>.12</td>
<td>.33</td>
</tr>
</tbody>
</table>

Note. Expected utility theories require choices of A and A*, or of B and B*, for all choice pairs {A, B} and {A*, B*} within each of the first three choice sets; rank-dependent utility theories require choice of A and A*, or of B and B*, in the last set. “Stochastic dominance.” In all sets, empirical evidence suggests majority choices for A and B*, which are predicted when substituting the process model weights in Equation 1, with $u(x) = x$, to produce WEU(A) > WEU(B) and WEU(B*) > WEU(A*) within each set. The values of w_i show the predicted weight to outcome i of each gamble, when outcomes are rank-ordered. See text for properties of choice options in each choice set. Weights may not sum to one in all rows because of rounding.

Violations of Branch Independence and Stochastic Dominance

Birnbaum and colleagues (Birnbaum & McIntosh, 1996; see also Birnbaum & Chavez, 1997; Birnbaum & Veira, 1998) have shown how violations of branch independence refute perhaps the most popular algebraic model, prospect theory (Kahneman & Tversky, 1979). When presented with the choice {A3, B3}:

- A_3: ($\$10, 1/3; \$24, 1/3; \$45, 1/3$)
- B_3: ($\$10, 1/3; \$12, 1/3; \$96, 1/3$).

Note that the predictions of DFT in this case would produce the same ordinal relations, although they would provide additionally indications of preference strength (choice probabilities).
most people prefer A_3 over B_3, presumably because A_4 gives only one chance for producing a ‘very poor’ outcome but B_3 provides two chances. However, consider the following:

$$A_3^* : \left(\frac{24}{3}, \frac{1}{3}; \frac{45}{3}, \frac{1}{3}; \frac{100}{3}, \frac{1}{3} \right)$$

$$B_3^* : \left(\frac{12}{3}, \frac{1}{3}; \frac{96}{3}, \frac{1}{3}; \frac{100}{3}, \frac{1}{3} \right).$$

Now, most people reversed and chose B_3^* over A_3^* because now B_3^* gives two chances of producing a ‘very good’ outcome and A_3^* gives only one chance. This is a violation of branch independence. Note that A_3 and B_3 share a common outcome with a common probability ($1/3$ chance of $\$10$), and this common term should cancel out for prospect theory. Note also that A_3^* and B_3^* simply replace the common outcome of $\$10$ with a common outcome of $\$100$ dollars, and again this common outcome would cancel out. After cancelling out the common terms, there is no difference between these pair of choices. Thus prospect theory (as well as many others) must satisfy branch independence (select A_3 and A_3^*, or select B_3 and B_3^*), which fails to explain these findings.

Branch independence violations are problematic for all theories in which the weight given to an outcome only depends on the subjective probability assigned to that outcome. Contrary to this assumption, the violations of branch independence indicate that the weight given to a 1/3 probability associated with the smallest outcome differs from the weight given to the same 1/3 probability when attached to the largest outcome. Instead, the weight given to an outcome seems to depend, not only its probability, but also on its rank order. Both rank-dependent utility models (RDU; e.g., Quiggin, 1992; Tversky & Kahneman, 1992) and configural weight models (CWU; e.g., Birnbaum, 2008) can explain these effects.

However, it turns out that RDU theories are also deficient for explaining human choice behavior (Birnbaum, 2008). In particular, the RDU rule cannot explain violations of stochastic dominance (Birnbaum, 2005; Birnbaum & Navarrete, 1998; Birnbaum, Patton, & Lott, 1999; Loomes, Starmer, & Sugden, 1992). Consider the pair of gambles $\{A_4, B_4\}$:

$$A_4 : \left(\frac{12}{.10}; \frac{90}{.05}; \frac{96}{.85} \right)$$

$$B_4 : \left(\frac{12}{.05}; \frac{14}{.05}; \frac{96}{.90} \right).$$

People choose A_4 over B_4 presumably because A_4 has two ways to produce a ‘very good’ outcome but B_4 has only one way (as if the outcomes are equally likely even though they are not). However, B_4 stochastically dominates A_4, which can be seen by considering the next pair of gambles:

$$A_4^* : \left(\frac{12}{.05}; \frac{12}{.05}; \frac{90}{.05}; \frac{96}{.85} \right),$$

$$B_4^* : \left(\frac{12}{.05}; \frac{14}{.05}; \frac{96}{.90}; \frac{96}{.85} \right).$$

Now people almost always choose B_4^* over A_4^*. This is because it is clear that B_4^* always produces at least as good or better result than A_4^* with the same probability, and so B_4^* stochastically dominates A_4^*. However, A_4^* is constructed from A_4 simply by splitting the $\$12$ with probability $.10$ into two parts: each part is $\$12$ with probability $.05$. Similarly, B_4^* is constructed from B_4 simply by splitting the $\$9$ with probability $.95$ into two parts: $\$96$ with probability $.05$ and $\$96$ with probability $.90$. Thus B_4 also stochastically dominates A_4. People tend to violate stochastic dominance with the pair $\{A_4, B_4\}$ but satisfy it with the pair $\{A_4^*, B_4^*\}$ (Birnbaum, 2005; Birnbaum & Navarrete, 1998; Birnbaum, Patton, & Lott, 1999). Birnbaum (2008) endorses the TAX model, which succeeds in explaining the appropriate violations of stochastic dominance. Can our attention process model, as well?

To apply the current model, we used the exact same protocol and parameters described in the preceding application. The only changes were the gamble stimuli on which the process was applied. Table 1 again shows the ability of the model to accurately explain violations of branch independence and stochastic dominance. Importantly, our model makes the correct prediction when the stochastic dominance is transparent, as in $\{A_4^*, B_4^*\}$.

Figure 4 shows how sensitive the model predictions for all four effects in Table 1 are to the exact parameter values used here. Specifically, the figure shows the parameter value combinations that produce each of the four effects considered in this section, given the protocol used here. It is interesting to note that the process model parameter values which predict these four effects to co-occur suggest a strictly convex weighting function (Figure 2a). It is an open question whether this type of weighting function is empirically supported among participants that simultaneously show all four effects.
Additional Predictions

Now we examine some new effects that manipulate attention without changing the outcomes or their probabilities. Note that none of the traditional decision models mentioned above, including Birnbaum’s (2008) TAX model, have posited any formal mechanisms for explaining these manipulations.

Advertisement or “attention grabbing” effects. The attention process model makes predictions concerning the effects of advertisements on decision weighting, which grab attention but provide no logical information about outcome probabilities. For example, Weber and Kirsner (1997) found that increasing the perceptual salience (e.g., font size) of gamble outcomes affected choices, and could be modeled by increased weight given to those outcomes. This agrees with our conceptualization of decision weight as a product of shifting attention, and could be accounted for by assuming an increase in initial attention to salient outcomes. That is, increased salience of a specific outcome would suggest an increased probability of initial attention to the outcome, which would in turn produce increased weight to the outcome (see also Shah & Oppenheimer, 2007; and Armel, Beaumel, & Rangel, 2008, for related results that can be similarly explained). To support this explanation, work using process-tracing paradigms such as eye-tracking indeed show increased initial attention to salient features (see Orquin & Mueller Loose, 2013, for a review). Future work could potentially incorporate pro-

![Figure 4](tapraid5/dec-dec-dec-dec00116/dec0156d16z xppws S=1 1/5/16 7:41 Art: 2014-1090 APA NLM)

Figure 4. Parameter space map producing effects for corresponding stimuli in Table 1. Points indicate the (ε, β) parameter combinations, to a precision of 0.05, that produce (a) the common ratio effect, (b) the common consequence effect, (c) violations of branch independence, and (d) violations of stochastic dominance.
process-tracing in tasks such as that of Weber and Kirsner (1997) to directly test the specific effect regarding probability weighting. In fact, evidence indicates that there is a strong link between frequency and duration of information views (i.e., attention) and the decision weight given to the information (Wedell & Senter, 1997).

Emotional or “affect-rich” outcomes. The process model can also provide psychologically plausible interpretations for phenomena that would seem to contradict algebraic accounts. For example, Rottenstreich and Hsee (2001) discovered that when choices involve emotionally laden outcomes rather than risky monetary gambles the probability weighting function seems to be flatter across the middle range of probabilities, or more step-like. At best, the algebraic approach would be silent on this issue. More likely, the standard algebraic account would specify decreased discriminability or sensitivity for emotional outcomes, because this is the only way to produce the qualitative result (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992). Second, we compare the predictions of the attention process model with predictions of the model. First, we compare the predictions from a well-known study concerning decision weights conducted by Wu and Gonzalez (1996). Their 105 participants each made 40 pairwise choices in an 8(Probability) × 5(Expected Value) factorial design, manipulating the probability of winning an outcome common across

Effects of motivational focus. The previous example showed how changes in the dwell probability, independent of any changes in (i.e., given a constant) initial probability distribution, could produce reported effects for emotional outcomes. Alternatively, changes in only the initial probability distribution (i.e., with a constant dwell probability) can also be used to explain other results. For example, Kluger, Stephan, Ganzach, and Hershkovitz (2004) elicited participants’ decision weights for many probability values from various nongamble stimulus domains, such as the perceived probability of a change in social order or victimization in a terrorist attack, given the objective probability of such events. Kluger et al. (2004) found that domains they posited to reflect a “promotion” motivational focus showed more elevated weighting functions, relative to neutral domains and those which engage a “prevention” motivational focus (such as the social order and victimization examples). This increase in elevation can be produced in the process model by assuming an increase in the initial attention to larger outcomes, which agrees conceptually with the notion of a promotion focus (Higgins, 1998). In a similar manner, the process model can use differential initial attention to larger versus smaller outcomes to explain differences between “security-minded,” “potential-minded,” and “cautiously-hopeful” individuals described by Lopes (1995).

Quantitative Comparisons

The previous sections focused on qualitative predictions of the attention process model. In this section we summarize two quantitative tests of the model. First, we compare the predictions about aggregate choice proportions generated by the attention process model with predictions generated by perhaps the most popular algebraic model, cumulative prospect theory (CPT; Tversky & Kahneman, 1992). Second, we compare the model predictions to the empirically determined probability weighting functions derived from 10 individual participants (see Appendix C for details of both procedures). In this manner, we are able to examine both the aggregate- and individual-level performance of the model. For the first quantitative test, we used data from a well-known study concerning decision weights conducted by Wu and Gonzalez (1996). Their 105 participants each made 40 pairwise choices in an 8(Probability) × 5(Expected Value) factorial design, manipulating the probability of winning an outcome common across
the two gambles, as well as the expected win from each gamble (held relatively equal across each pair). The data thus consisted of choice probabilities (across participants) for each of 40 binary choice conditions between three-outcome gambles. This study was designed to carefully investigate the curvature of the decision weighting function within a CPT framework using the weighting function in Equation 6; see Appendix C for details.

A generalization criterion (Busemeyer & Wang, 2000) was used to compare the CPT as applied in the original source with our new process model. This procedure involves fitting model parameters to data from a subset of calibration conditions, and then using these same parameters to make a priori predictions for data from a subset of generalization test conditions. Using this method, the predictions for the generalization test phase do not involve fitting any free parameters, but rather models are tested on their ability to generalize to new conditions.

We first fit both the attention process model and the CPT model presented in Wu and Gonzalez (1996) to the four lowest common outcome probabilities (20 conditions), and then we used the resulting parameter estimates to predict choices among the remaining 20 conditions with relatively high common outcome probabilities. In this generalization test, the attention process model (SSE = .117, $R^2 = 0.58$) outperformed the CPT model (SSE = .135, $R^2 = .51$). Next, we reversed the procedure: we fit the models to choices involving the higher set of probability conditions, and then predicted choices for the lower set of conditions. Once again, the attention process model (SSE = .068, $R^2 = 0.56$) outperformed the CPT model (SSE = .128, $R^2 = 0.16$). Again, it is important to recognize that these are a priori quantitative predictions for the relative frequencies obtained from 20 new conditions using no free parameters. These results provide empirical evidence that the attention process model not only explains the qualitative findings in the previous section better than the RDU model, but also makes better quantitative predictions than a standard RDU model, cumulative prospect theory.

In applying the process model of weighting to a second study, the data reported in Gonzalez and Wu (1999), there are two key differences from the previous procedure. First, for this application the experimental design provides enough data to perform model fits for each individual, rather than fitting summary measures (mean estimated weights across individuals). This is indeed more in line with the level of analysis of our process model, which specifies attentional processes that occur within the individual.

Second, Gonzalez and Wu (1999) used a pricing (certainty equivalent) task as opposed to choices. We have developed a computational model for pricing data (Johnson & Busemeyer, 2005), and the pricing model used by Gonzalez and Wu (1999) is a special case of our model (produced by allowing one of our parameters to approach zero in a limit). Our computational model is essential if one wishes to account for preference reversals between choices and prices (see Johnson & Busemeyer, 2005). However, choices were not included in this second study, and so preference reversals are not the focus of the current application. Therefore, we will use the limiting case of our model which reduces to the same pricing model used by Gonzalez and Wu (1999) to make the predictions more comparable.\footnote{Using the unrestricted pricing model of Johnson and Busemeyer (2005), with any additional parameters set to values reported therein, the fits increased marginally. For the median data: SSE = 22.652; $R^2 = 0.98$. The resulting attention process model parameters were $z = 0.11$; $\beta = 0.38$; and $\alpha = .15$.}

Gonzalez and Wu (1999) elicited certainty equivalents from 10 participants for each of 165 two-outcome gambles (15 outcome pairs crossed with 11 levels of probability). To fit the data, we followed the same general procedure of Gonzalez and Wu (1999). Once again, we fit

\footnote{We examined the use of a maximum likelihood procedure as well, which produced very similar results. We report SSE in following Wu and Gonzalez (1996) and for ease of interpretability.}

\footnote{The performance of the models in fitting the calibration data suggests the same pattern of results. For the set of lower probability conditions, the process model obtained $R^2 = 0.56$ and the RDU model obtained $R^2 = 0.24$; for the higher probability conditions, the process model obtained $R^2 = 0.58$ and the RDU model obtained $R^2 = 0.57$. The lower probability conditions seem harder to fit, in general. Also, note that the performance of the process model changed little from the calibration set to the generalization set, whereas the RDU model performance decreased substantially in the second application, a possible sign of overfitting by the latter but not the former (Roberts & Pashler, 2000).}
a total of three parameters—one utility parameter and two decision weight parameters—to each individual participant as well as the median data. Results for all participants are reported in Table 2. The median data were best fit with \(z = 0.44 \) (which in this binary case corresponds to \(z_1 \), the probability of first considering the lower outcome) and \(\beta = 0.93 \), with an inflection point near 0.40. For the median data, the best-fitting process model produced \(R^2 = 0.94 \), with a mean \(R^2 \) of 0.90 across all 10 participants. Note that the model was able to account for qualitatively different weighting trends by the individual participants, such as “typical” inverse-S weighting (Participant 3), nearly linear weighting (Participant 6), and nearly step weighting (Participant 8).

Discussion

During the past 60 years, decision scientists working within an algebraic utility framework have assumed a weighted combination of probability and value information drive human risky decision making. The subjective evaluation of value has been well-captured by a utility function that includes psychological notions such as diminishing marginal sensitivity and reference dependence. The evaluation of probability information that weights this utility has also been the subject of much research. However, in this vein, the ideas started out simple but have become increasingly complex and—we would argue—further removed from the underlying cognitive psychology. Successfully describing the catalog of empirical results from the past 60 years has evolved from assuming that the weight simply equals the outcome probability, to the assumption that weight represents a difference between two nonlinearly transformed rank-dependent decumulative probabilities (e.g., Tversky & Kahneman, 1992; Birnbaum, 2008). In short, the theory of decision weights has become very complicated, which makes one wonder: where do these complicated formulas come from?

We have tried to answer this question using a cognitive modeling approach. The basic idea is that a decision weight corresponds to the proportion of times (or the probability) that an outcome is predicted to occur when a gamble is played. An attention process model, illustrated in Figure 1, is then used to describe the process used to generate these predictions. The resulting process model produces decision weights that reproduce properties postulated by decision theorists.

The attention process model also has several distinct advantages. It does a better job of explaining the empirical qualitative findings than most of the previous decision weight theories (specifically, theories that must satisfy stochastic dominance), and it also makes more accurate quantitative predictions than the weights commonly used in cumulative prospect theory. It can produce weights that approximate those obtained from Birnbaum’s TAX model, which is one of the most successful weighted expected utility models to date. More importantly, it makes new predictions for manipulations of attention (holding outcomes and probabilities fixed) that are supported by experiments yet cannot be explained by utility theories. For example, the attention process model explains how decision weights may change depending on “advertising” or “attention grabbing” manipulations, even when the outcome probabilities remain the same (e.g., Weber & Kirsner, 1997). Finally, the basic idea that a decision weight reflects the percentage of times one considers an outcome is supported by process tracing research that finds “looking time” to be highly correlated with estimated decisions weights (Wedell & Senter, 1997).

Table 2

Parameter Estimates and Fit Statistics for Individual Participants and Median Data From Gonzalez and Wu (1999)

<table>
<thead>
<tr>
<th>Participant</th>
<th>(z)</th>
<th>(\beta)</th>
<th>(\alpha)</th>
<th>SSE</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.30</td>
<td>.97</td>
<td>.68</td>
<td>98891</td>
<td>.88</td>
</tr>
<tr>
<td>2</td>
<td>.52</td>
<td>.87</td>
<td>.35</td>
<td>129560</td>
<td>.91</td>
</tr>
<tr>
<td>3</td>
<td>.43</td>
<td>.92</td>
<td>1.00</td>
<td>116550</td>
<td>.94</td>
</tr>
<tr>
<td>4</td>
<td>.17</td>
<td>1.00</td>
<td>.59</td>
<td>24388</td>
<td>.93</td>
</tr>
<tr>
<td>5</td>
<td>.84</td>
<td>.98</td>
<td>.14</td>
<td>238060</td>
<td>.76</td>
</tr>
<tr>
<td>6</td>
<td>.63</td>
<td>.63</td>
<td>.67</td>
<td>15817</td>
<td>.99</td>
</tr>
<tr>
<td>7</td>
<td>.30</td>
<td>1.00</td>
<td>.57</td>
<td>59718</td>
<td>.86</td>
</tr>
<tr>
<td>8</td>
<td>.31</td>
<td>.99</td>
<td>.41</td>
<td>88122</td>
<td>.84</td>
</tr>
<tr>
<td>9</td>
<td>.36</td>
<td>.61</td>
<td>.58</td>
<td>48739</td>
<td>.97</td>
</tr>
<tr>
<td>10</td>
<td>.41</td>
<td>.88</td>
<td>.51</td>
<td>150450</td>
<td>.88</td>
</tr>
<tr>
<td>Median</td>
<td>.44</td>
<td>.93</td>
<td>.48</td>
<td>58309</td>
<td>.94</td>
</tr>
</tbody>
</table>

Note. SSE = sum of squared residuals between reported data and model predictions.
Alternative Versions of the Process Model

Beyond changing the free parameters \((z, \beta)\) of the model, it is possible to conceive of other procedural changes as well. For example, perhaps transitions can occur not only to neighboring outcomes, but to any other outcomes in a gamble. That is, at any given moment, perhaps one may consider any outcome rather than just the outcomes adjacent (in rank order) to the outcome considered in the preceding moment. This would require reapportioning transition probabilities among viable states for event E3, such as follows:

\[
\pi_{ij} = \frac{(1 - \pi_i)(1 - \beta)}{n - 1}, \text{ for all } j \neq 1
\]

However, this process of jumping to any outcome fails to reproduce the findings reviewed above. The random walk (transitions only to adjacent states) used in Figure 1 produces a slow drift across the outcome scale, which is needed to reproduce the findings summarized here. One can imagine other possible modifications as well, such as alternative formulations for the initial probability distribution. In our exploration of model variants, we considered uniform probabilities to begin with any outcome, as well as an initial probability distribution set equal to the objective outcome probabilities (see Figure 2). Considering these alternative procedural formulations and/or parameter settings, the proposed attention process is not so much a specific model as it is a family of related models, each making different assumptions about the exact details of the process.

Even though only the model as shown in Figure 1 has been found to be completely successful in accounting for all of the important findings covered here, it is not necessarily the case that a single model version need account for all findings simultaneously. The applications we have used here were collected from decades of research, and we are not aware of a single study that simultaneously produces all of these effects. Thus, just as the parameter values used between our qualitative and quantitative sections differed, the exact parameter values and model formulation that might best be suited to any specific empirically obtained result remains an open question. For example, Fiedler and Glöckner (2012) report increased attention to gamble outcomes as their value and probability increase. These effects could be captured in our model by a biased start toward higher outcomes, and the relation between objective probability and exit probability inherent in the model, respectively. Thus, although we are confident and supportive of the modeling framework proposed herein, we do not make any strong claims about the generality of the specific parameters used in our “proof of concept” here to produce the behavioral trends.

Predictions for Independent Versus Dependent Gambles

The attention process model can also be formulated to operate on gambles when the outcomes are dependent, as opposed to the assumed independence used in the reported applications (and almost exclusively in the existing literature). For example, assume that there are 99 colored marbles in each of two urns representing the outcomes of the gambles below:

- **F**: ($10, 1/3; $24, 1/3; $45, 1/3)
- **G**: ($10, 1/3; $12, 1/3; $96, 1/3).

If a ball is drawn from each urn, for each gamble, any outcome from F can occur with any outcome of G, so that if both gambles were realized, $24 could occur with F and $96 could occur with G, for example. In this case, it is assumed that an independent prediction is made for each gamble as introduced in our model originally.

If some common event, such as drawing a green marble, produces outcomes for both gambles, then the attention model would mentally...
simulate these events, rather than predicting independent outcomes for each gamble. In other words, attention would shift among the different colored marbles, producing a prediction for a particular color (such as green), which would then determine the prediction simultaneously for both gambles. It is worth noting that, except for regret-based theories (Loomes et al., 1992), none of the algebraic utility-based decision weight models introduced in the current work make any distinction between independent and dependent gambles (Andraszewicz, Rieskamp, & Scheibehenne, 2015).

To illustrate the model in this situation, consider the simplest case where a single fair coin flip will determine the payoffs for two different binary outcome gambles. In this case, the outcomes depend on a common event, that is, the coin flip. The notation ($x, H; y, T$) represents a payoff of x should the coin land on heads, and y should tails occur, where $Pr[\text{Head}] = Pr[\text{Tail}] = 0.5$. Consider a choice between the pair:

$$F: (100, H; -100, T),$$

$$G: (99, H; -101, T).$$

Obviously, F stochastically dominates G, and people almost always choose F (see Diederich & Busemeyer, 1999, for related work with different stimuli). Next consider a choice between the pair:

$$F: (100, H; -100, T);$$

$$G^*: (-101, H; 99, T).$$

Note that in terms of probabilities and outcomes, G^* is identical to G and so F still stochastically dominates G^*. However, people are almost indifferent between these two options, and the probability of choosing F drops down close to 0.5 in some cases (for the more complicated stimuli used by Diederich & Busemeyer, 1999). This juxtaposition of equally likely events with payoffs has a major effect on choices. Again, none of the traditional decision theories reviewed earlier predict this juxtaposition effect, because in these theories the utility of a gamble is based solely on the outcomes and probabilities of the gamble, and so the choice between F and G is identical to the choice between F and G^*.

According to the attention process model, attention is now focused on the possible outcomes of the coin flip. On the one hand, when faced with a choice between F and G, the only two possible predicted outcomes are 100 for F and 99 for G (if attention is focused on the event heads); or -100 for F and -101 for G (if attention is focused on the event tails). Gamble F is clearly better in both circumstances, there is no conflict at all, and so F is always chosen. The decision maker modeled by our process model would never predict a pair of outcomes such as 100 for F and -101 for G, because this combination of outcomes is impossible for this pair of actions. On the other hand, when faced with a choice between F and G^*, the only two possible predicted outcomes are 100 for F and -101 for G^* (if attention is focused on the event heads); or -99 for F and 100 for G^* (if attention is focused on the event tails). The choice is now very unclear because what one should do depends strongly on whether a head or tail occurs. This introduces a great deal of conflict, and makes preferences more uncertain and choices more random. In short, if the gamble outcomes are yoked to specific events (i.e., heads or tails) then attention does not shift independently among outcomes, but instead these predictions are coordinated by the events. Indeed, assuming $\beta = 0.70$ and linear utility, $u(x) = x$, as in the other qualitative applications, equal probability of attending first to either heads or tails ($z = 0.5$), and using decision field theory to predict choices (in order to produce probabilistic choice; see Appendix A), the process model predicts $Pr[F | \{F, G\}] > 0.99$, and $Pr[F | \{F, G^*\}] = 0.51$, in line with the empirical result.

To summarize, a reasonable extension of the attention process model explains how decision weights may change depending on the nature of the random device used to generate gamble outcomes, even when the outcome probabilities remain the same—that is, depending on whether outcomes are generated by statistically independent or dependent devices. Previous decision theories assume that the weights depend only on the outcome probabilities (and possibly value ranks) for each gamble, and they are insensitive to the statistical dependence of the outcomes between gambles. The effect of statistical dependence was empirically demonstrated in the study by Diederich and Busemeyer (1999) as well as a more recent study by Andraszewicz, Rieskamp, and Scheibehenne (2015).
Other Extensions and Future Directions

The attention process model also makes predictions regarding the time it takes to generate each sample, and thus the overall decision time. Specifically, factors that increase the dwell time parameter, \(\beta \), should increase the time required to generate a prediction, and thus increase the total decision time (see Appendix A for a mathematical analysis). Recall that we explain the effect of emotional outcomes by assuming that the dwell rate parameter is larger for these types of outcomes. If this assumption is correct, then we are forced to predict that decision times should be longer for these emotional outcomes. Because empirical work for decades has been driven by utility theories that are silent on predictions such as information search and response time, there is not yet an abundance of data to critically examine these aspects of computational models of decision making.

The general phenomenon of probability weighting is likely to extend beyond situations such as the admittedly artificial gambling tasks presented in the current work. For example, Ungemach, Chater, and Stewart (2009) study decision weighting in situations where outcome probabilities of gambles are learned from experience rather than directly stated. Glaser, Trommershäuser, Mamassian, and Maloney (2012) extend this type of situation to a visual task (in addition to traditional gambles) and find similar trends of overweighting small probabilities and underweighting large ones via Equation 6. Kusev, van Schaik, Ayton, Dent, and Chater (2009) applied Equation 4 across five experiments comparing traditional gambles with more “real world” decisions such as buying insurance against lost luggage and found differential probability weighting across different problem contexts, even with identical probabilities and values. Future applications of the process model to more ecologically valid situations such as these would be especially beneficial in understanding the mechanisms involved. For example, assuming a greater dwell probability in the current model in the context of insurance decisions could apparently explain the effects reported by Kusev et al. (2009). Finally, it would be worthwhile to compare the current model to other recent accounts of decision weighting, both in terms of their explanatory power as well as in their proposed perceptual and cognitive mechanisms. Bordalo, Gennaioli, and Shleifer (2012) propose a theory of probability weighting that depends on the context-dependent saliency of outcomes, whereby outcomes that are more attractive in contrast to other outcomes garner more weight. Fennell and Baddeley (2012) propose that Bayesian updating can produce decision weighting effects by assuming either knowledgeable (beta) or uninformative priors which are updated with the probability information stated in a decision task. It would be interesting not only to explore the theoretical and conceptual similarities and distinctions between the current model and these alternative perspectives, but also to develop experimental tests that could discriminate among them.

Just as empirical violations of theoretical properties have led to the current incarnations of utility theory (such as TAX, arguably the most successful form), results that contradict these theories should pave the way for embracing new, alternative models. Some researchers prefer to continue adjusting the utility framework as necessary, leading to increasingly opaque and theoretically complex forms. We adopt a different approach through computational modeling of the cognitive processes underlying decision behavior. The number and scope of applications of computational models to decision making are growing at a rapid pace (see Busemeyer & Johnson, 2004; Johnson & Busemeyer, 2010). These models account for results that have challenged traditional theories while adding novel predictions, parsimony, and psychological plausibility.

References

Dror, I. E., Basola, B., & Busemeyer, J. R. (1999). Decision making under time pressure: An indepen-

Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A review on eye movements in deci-

(Appendices continue)
Appendix A

Integrating the Attention Process Model Into Decision Field Theory

Consider a choice between two gambles, labeled A and B. The preferences for A and B at time t are denoted $P_A(t)$ and $P_B(t)$, respectively. In a simple version of DFT, the preference for an option evolves according to the following random walk equation: $P_i(t + 1) = P_i(t) + V_i(t + 1)$, where the $V_i(t)$ is called the valence of option i at time t. The valence for option i is defined as $V_i(t) = [U_i(t) - U_j(t)]$, where $U_i(t)$ and $U_j(t)$ represent the affective evaluations of the outcomes that are anticipated for options i and j at time step t.

For example, consider the choice between the following pair given in the Introduction:

A: (12, $0.10; 90, $0.05; 96, $0.85),
B: (12, $0.05; 14, $0.05; 96, $0.90).

At each time step, a valence is generated by considering a possible outcome from A, and also considering a possible outcome from B, and then comparing the difference in affective values between these two anticipated outcomes. What is the probability of anticipating a particular outcome from each gamble to determine the valence at each time step?

Here is where the attention process model makes a contribution. We now use Equation 1 to determine the probability of considering an outcome from a gamble at each time step. For example, considering gamble A, and using the parameters $z = 0$ and $\beta = 0.70$, then according to Equation 2 or Equation 3, the probabilities of considering the outcomes 10, 90, 96 equal $(.40, .16, .44)$ at each time step.

Choice Probability Predictions From DFT

To compute the choice probability predictions, we need to derive the mean and variance of the valence (see Busemeyer & Townsend, 1992, for derivations). For a binary choice between two statistically independent gambles A and B, these are given by:

\[
E[V(t)] = \mu = E[U_A(t)] - E[U_B(t)], \quad (A1)
\]

\[
\text{Var}[V(t)] = \text{Var}[U_A(t)] + \text{Var}[U_B(t)] \quad \text{and} \quad \sigma = \sqrt{\text{Var}[V(t)]} \quad (A2)
\]

The individual means and variances are determined as follows, for $j \in \{A, B\}$ and outcomes $k = \{1, 2, \ldots, n\}$:

\[
E[U_j(t)] = \sum_k w(x_{kj}) \cdot u(x_{kj}), \quad (A3)
\]

\[
\text{Var}[U_j(t)] = \sum_k w(x_{kj}) \cdot u(x_{kj})^2 - E[U_j(t)]^2 \quad (A4)
\]

Here we have inserted the decision weights, $w(x_{kj})$, given by Equation 2 to determine the probabilities of considering each outcome from each gamble. These parameters are used together to compute a discriminability index, $d = \mu/\sigma$, much like the d' index used in signal detection theory. With this formulation, if we specify a threshold level θ indicating the value of accumulated preference necessary to make a choice, and assume that $P(\theta) = 0$ so the choice process starts unbiased, then the probability of selecting gamble A equals (see, e.g., Busemeyer & Townsend, 1993):

\[
\cdot \Pr[A \mid (A, B)] = \frac{1}{1 + \exp(-2 \cdot d \cdot \theta)}
\]

Dependent Gambles

In the Discussion, we alluded to the possibility of using our process model for situations where gamble outcomes are dependent. The model operates in the same manner, but now the attention is focused jointly on one outcome from each gamble (i.e., outcome pairs). In this case, the variance of the valence needs to take
into account the relationship between the gambles. Specifically, for the case of two paired outcomes as in the coin flip example, we use (where H denotes the first outcome, Heads; T denotes the second outcome, Tails):

$$\text{Var}[V(t)] = w(H)[x_{1H} - x_{2H}]^2 + w(T)[x_{1T} - x_{2T}]^2 - \mu^2 \quad (A5)$$

The weights $w(H)$ and $w(T)$ can easily be found using Equation 3 where the states Heads and Tails are arbitrarily but consistently defined. The rest of the derivation remains consistent with the case for independent gambles, with the computation of $d = \mu / \sigma$ after defining μ via Equations A1 and A3, and the probabilistic choice rule $\Pr[A \mid \{A, B\}]$.

Decision Time

One advantage of developing a process model for decision weights is that this process also describes the time it takes to make a decision. Of course, the original version of DFT is a process model for choice, and in previous work we have tested choice response time predictions derived from this choice process (Busemeyer & Townsend, 1993; Dror, Basola, & Busemeyer, 1999; Diederich, 2003). However, the addition of the attention process now requires us to consider two distinct conceptual time scales on which our hypothesized choice process operates. Each macro time step of the DFT choice process is now comprised of several micro time steps required to generate predicted outcomes of the gambles. Several moments pass in the attention model, corresponding to transitions among outcomes, before a prediction is made, and this prediction then produces a single step in the DFT choice process. The whole process of generating predictions and updating preferences is repeated until the threshold is reached, and the final time to make a decision is determined by the time this entire process takes.

Consequently, the new addition of the attention process to the previous DFT choice process has new implications for predictions regarding choice time. In previous applications to choice response time, we assumed that each time step of the preference accumulation process was constant. Now each time step is stochastically determined by the attention process. Thus the mean choice time is determined by the mean number of time steps required to reach threshold from the choice model, multiplied by the mean time to generate each step from the attention model. Of course all of these derivations depend on the assumption of serial processing of predictions from the attention process and updates of the preference accumulation process. Methodologies for identifying mental architecture (e.g., see Townsend & Wenger, 2004, for a review) could be used to test these serial processing assumptions. In previous applications, we derived the mean time for the DFT model to reach the choice threshold (Busemeyer & Townsend, 1992; Diederich & Busemeyer, 2003). Below we derive the mean time to generate a prediction from the attention model.

Prediction time for any single option i^* is a random variable, and the mean time required to produce each prediction can be found by (Diederich & Busemeyer, 2003; Busemeyer & Townsend, 1992):

$$E[t^* \mid W] = Z'(I - Q)^{-2}H^*h \div W \quad (A6)$$

Each element in the n-dimensional vector t^*_i thus gives the conditional mean time required to predict the corresponding outcome for the gamble i. The operator \div denotes element division of matrices, and the constant h is a scalar time unit used to translate the number of attention transitions into real time. Without h, Equation A5 produces the mean number of transitions undertaken by the attention model before predicting the corresponding outcome.

(Appendices continue)
Appendix B

Relevant Derivations and Solutions

Suppose a gamble has \(n \) outcomes ordered \((x_n > x_{n-1} > \ldots > x_{i+1} > x_i > x_1)\); then the attention weighting process can be, at any point in time, in one of \(n \) states, where the states are ordered by outcome values. The initial probability distribution across these \(n \) states is represented by the \(1 \times n \) row vector \(Z \), containing the probability \(z_i \) that outcome \(i \) is the first one considered. In the current applications, the distribution over initial states, \(z_i \), contained in \(Z \) is defined using a binomial distribution that depends on the parameter \(z \):

\[
z_i = \frac{(N - 1)!}{(i - 1)(N - i - 2)!} z^{i-1}(1 - z)^{N-i-2}
\]

Given that one is “looking” at a state, we assume that the exit or prediction probability for each state is equal to the objective probability of obtaining the associated outcome, \(\pi_i = p_i \).

The joint probability of not predicting state \(i \) but continuing to dwell on this state is then equal to \(\pi_{ii} = (1 - \pi_i) \cdot \beta \), for all outcomes \(i \). This corresponds to the probability of staying on the same node in Figure 1 for consecutive moments. If an exit has not occurred, and the person does not dwell there, then a transition to another state must occur with some total probability equal to \((1 - \pi_i) \cdot (1 - \beta)\). For now, we adopt the simple random walk assumption that transitions occur only to neighboring states (adjacent rank-ordered outcomes); then, for \(n \) outcomes, we obtain:

\[
\begin{align*}
\pi_{12} &= (1 - \pi_1)(1 - \beta) \\
\pi_{n(n-1)} &= (1 - \pi_n)(1 - \beta) \\
\pi_{i(i-1)} &= \pi_{i(i+1)} = \frac{(1 - \pi_i)(1 - \beta)}{2}, \text{ for } i \neq 1, n.
\end{align*}
\]

Derivation of Process Weighting Model Solution for Binary Case (Equation 3)

For the binary case, \(n = 2 \), then the transition matrix \(Q \) in Equation 1 becomes as follows:

\[
Q_2 = \begin{bmatrix}
(1 - p_1)\beta & (1 - p_1)(1 - \beta) \\
(1 - p_2)(1 - \beta) & (1 - p_2)\beta \\
p_1(1 - \beta) & p_1\beta
\end{bmatrix}
\]

The latter matrix takes advantage of the relation \(p_1 + p_2 = 1 \). This transition matrix is used to create the second term in Equation 2 by subtraction from a \(2 \times 2 \) identity matrix and taking the inverse:

\[
(I - Q_2)^{-1} = \begin{bmatrix}
\frac{1 + (p_2 - 1)\beta}{p_1(1 - \beta) + p_2(1 - \beta) + p_1p_2(2\beta - 1)} & \frac{(p_1 - 1)(\beta - 1)}{p_1(1 - \beta) + p_2(1 - \beta) + p_1p_2(2\beta - 1)} \\
\frac{p_1(1 - \beta) + p_2(1 - \beta) + p_1p_2(2\beta - 1)}{p_1(1 - \beta) + p_2(1 - \beta) + p_1p_2(2\beta - 1)} & \frac{1 + (p_1 - 1)\beta}{p_1(1 - \beta) + p_2(1 - \beta) + p_1p_2(2\beta - 1)}
\end{bmatrix}
\]

We define the initial state vector generally, \(Z_2 = [z_1 \ z_2]' \), and assume that the response or absorbing probabilities in \(R \) are equal to the objective probabilities (see text):

\[
R^*_2 = \begin{bmatrix}
p_1 & 0 \\
0 & p_2
\end{bmatrix}
\]

Then \(w_2 \) can be found as the second element of the matrix product in Equation 2:

\[
w_2 = \frac{(1 - \beta)z_1p_2^2 + (1 - p_2\beta)z_2p_2}{(1 - \beta)p_1 + (1 - \beta)p_2^2 + \beta p_1p_2}
\]

(Appendices continue)
Appendix C

Fitting the Process Model

Procedure for Fitting Process Weighting Model to Algebraic Functions

We used the domain of \(p^2 / H_{1005} [0, 0.01, 0.02, \ldots , 0.98, 0.99, 1.00] \) to generate predictions \(w(p^2) \) and then minimized the sum of squared residuals (SSE) between our model prediction of \(w(p^2) \) and these values. Specifically, we determined the value of \(z_1 \) (where \(z_2 = 1 - z_1 \)) and \(\beta \) in Equation 3 that minimized SSE. The parameters used to generate the algebraic functions are as follows: in Equation 4, \(\delta = 0.77, \gamma = 0.44 \), from Gonzalez and Wu (1999); in Equation 5, \(\beta = 1.0, \gamma = 0.65 \), from Prelec (1998); and in Equation 6, \(\gamma = 0.61 \), from Tversky and Kahneman (1992).

Application to Data From Wu and Gonzalez (1996)

The data reported by Wu and Gonzalez (1996) consist of choice probabilities (pooled across 105 participants) for each of 40 binary choices. They used a choice procedure among five different base “risky” and “safe” gamble pairs. For each pair, a “ladder” with eight “rungs” was created by incrementally increasing the probability of obtaining a common outcome shared by the two gambles. Their hypothesized concavity/convexity conditions suggest a pattern of choices that shows increasing preference (as the common outcome probability increases) for the risky option up to an inflection point, followed by increasing preference for the safer option (see Wu & Gonzalez, 1996, for theoretical and procedural details).

We derived choice predictions for DFT using the equations in Appendix A and compared them with the empirical data. Following Wu and Gonzalez, we used a power utility function to represent an outcome evaluation. This function allows us to model decreasing marginal sensitivity and (as a result) incorporate risk aversion. Specifically, we used Equation A3 with \(u(x_i) = x_i^\alpha \), where \(\alpha \) was a free parameter fit to the data. We derived each \(w_i \) using Equation 2. The other parameter of the DFT choice mechanism, the decision threshold bound, was preset and held fixed at a value (three) obtained from previous applications of that model. This produced a total of three free parameters, \(\alpha, \beta, \) and \(z \), that were found so as to minimize the SSE between the observed and predicted choice probabilities.

We derived choice predictions for CPT following the procedure of Wu and Gonzalez (1996; see especially p. 1685). Specifically, for each gamble we calculated the rank-dependent utility by summing across two nonzero outcomes:

\[
RDU(A) = w(p_2)u(x_2) + [w(p_1 + p_2) - w(p_2)]u(x_1) \tag{C1}
\]

where \(w(p_i) \) is defined using Equation 6 and \(u(x_i) = x_i^\gamma \). We then used a logistic function to determine choice probabilities:

\[
Pr[A | \{A, B\}] = 1/(1 + e^{RDU(B) - RDU(A)}) \tag{C2}
\]

This produced a total of two free parameters, \(\alpha \), and \(\gamma \), that were found so as to minimize the SSE between the observed and predicted choice probabilities.

(Appendices continue)
First we fit one set of parameters to all five choice ladders simultaneously. The best fitting parameters for the attention process were $\beta = .01$ and $z = .02$ (with $\alpha = .19$). The fit value of z resulted in initial state probabilities of .9604, .0392, and .0004 for the lowest, moderate, and highest outcomes of each ternary gamble, respectively. For the combined fit, the model achieved $R^2 = 0.57$ (SSE = .183). For comparison, the CPT model produces $R^2 = 0.43$ (SSE = .246) for a one-parameter weighting function, and only nominal improvement using a two-parameter function.

Finally, it is important to note that the performance of the process model is not simply due to added complexity or an increase in parameters, as evidenced by the applications of the generalization criterion method (Busemeyer & Wang, 2000) reported in the text. This procedure involves fitting model parameters to a subset of empirical conditions and then testing the models with these parameters fixed under the remaining conditions. For the current application, Wu and Gonzalez (1996) obtained data within a given “ladder” or choice pair for eight different probability values of the common outcome: {0, 0.10, 0.20, 0.30, 0.45, 0.60, 0.75, 0.90}. We first fit both the attention process model and the RDU model presented in Wu and Gonzalez (1996) to choices using the lower four probability values and then used the resulting parameter estimates to predict choices among the higher four probability values; we then reversed the role of the choice sets. These tests, reported in the text, provide strong evidence that the performance of the process model is robust across data sets, as it accounts for the same amount of participant variability even when parameters are not estimated from the test data.

Importantly, it seems that the process model, not just the DFT choice mechanism, is responsible for the result. We also examined the use of a logistic function (Equation C2, with utilities calculated via Equation 1 rather than Equation C1) to determine choice probabilities, thus following the procedure of Wu and Gonzalez (1996) in all respects except for the weighting function. In this case, the model still outperformed the reported fit of prospect theory, but did not quite match the performance with the DFT choice model. Best-fitting parameters in this case were $z = .05$, $\beta = .79$, and $\alpha = .39$; this produced SSE = .21 and $R^2 = 0.52$.

Application to Data From Gonzalez and Wu (1999)

The data reported by Gonzalez and Wu (1999) consist of certainty equivalents (CE) for 165 individual gambles, for each of 10 individuals. We derived predictions for each of the 10 individuals, as well as for the set of median CEs, as follows. The dwelling probability β was again fit to the data, subject to the constrained interval [0, 1]. Furthermore, although all gambles in this task were binary, for consistency the same binomial distribution method (see Appendix B) as in the previous application was used to determine the distribution over initial states in the weighting model with one parameter, z. For each gamble G, we computed the simple EU(G) as in the previous application was used to determine the distribution over initial states in the weighting model with one parameter, z. For each gamble G, we computed the simple EU(G) using Equation 1, with $u(x_i) = x_i^\alpha$ and derived $w(p_i)$ again using Equation 2. Then, we used the inverse of the value function, $u^{-1}(x_i) = x_i^{1/\alpha}$, to transform EU($G$) into a predicted certainty equivalent: $CE = u^{-1}(EU(G)) = EU(G)^{1/\alpha}$. We found the values of the free parameters α, β, and z that minimized the SSE between the reported and predicted CEs separately for each individual, and for the median data.

Received September 10, 2014
Revision received June 2, 2015
Accepted November 25, 2015
AUTHOR PLEASE ANSWER ALL QUERIES

AQau—Please confirm the given-names and surnames are identified properly by the colors.

- Given-Name, - Surname

The colors are for proofing purposes only. The colors will not appear online or in print.

AQ1—Author: This article has been lightly edited for grammar, style, and usage. Please compare against your original document and make changes on these paged proofs. If no change is required in response to a question, please write “OK as set” in the margin.

AQ2—Author: Please be sure to provide the name of the department(s) with which you and your coauthors are affiliated at your respective institutes if you have not already done so. If you are affiliated with a governmental department, business, hospital, clinic, VA center, or other nonuniversity-based institute, please provide the city and U.S. state (or the city, province, and country) in which the institute is based. Departments should be listed in the author footnote only, not the byline. If you or your coauthors have changed affiliations since the article was written, please include a separate note indicating the new department/affiliation: [author’s name] is now at [affiliation].

AQ3—Author: Please limit Key Words to no more than 3 to 5.

AQ4—Author: Diederich (1997) is not in your references. Please add to the reference list or delete from the text.

AQ5—Author: Diederich (1997) is not in your references. Please add to the reference list or delete from the text.

AQ6—Author: Please read over all equations and graphics carefully to ensure that all characters translated correctly.

AQ7—Author: Rieskamp (2008) is not in your references. Please add to the reference list or delete from the text.

AQ8—Author: Roe et al. (2001) is not in your references. Please add to the reference list or delete from the text.

AQ9—Author: Camerer & Ho (1994) is not in your references. Please add to the reference list or delete from the text.

AQ10—Author: Please review the typeset table(s) carefully against your original table(s) to verify
accuracy of editing and typesetting.

AQ11—Author: Brandstätter et al. (2002) is not cited in your text. Please cite in the text or delete from the references.

AQ12—Author: Please confirm that all authors’ institutional affiliations (including city/state/country locations) and correspondence information are correct as shown in the affiliations footnote.

AQ13—Author: Please confirm figure(s) and legend(s) as set.