Michael A. Mandell

Department of Mathematics

M. Mandell

Contact Information


Department of Mathematics
Rawles Hall
Indiana University
Bloomington, IN 47405


Rawles Hall 449
(812) 855-8524


Conferences and Seminars

Department Topology Seminar Calendar
Department Topology-Geometry Seminar Calendar
Department Colloquium Calendar
Midwest Topology Seminar Main Page, Bloomington Fall 2006, Chicago Fall 2009, Indianapolis Spring 2014, Bloomington Spring 2018
Upcoming Topology Conferences List

Recent Conference and Seminar Talks

These are uncorrected and contain several typos, sometimes bad ones.

  • E2 Structures and Derived Koszul Duality in String Topology
    AMS Fall 2018 Central Sectional Meeting, Ann Arbor, MI 10/20/18 pdf (approx 509k)

  • Introduction to THH and related theories
    Floer Homology and Homotopy, UCLA 7/17/17. pdf (approx 755k)

  • Topological Periodic Cyclic Homology
    HIM Workshop on K-theory and Related Fields 6/27/17. pdf (approx. 837k)
    Shanks Workshop on Homotopy Theory, Vanderbilt University 3/25/17. pdf (approx. 807k)
    MIT Topology Seminar 3/13/17. pdf (approx. 846k)

  • All Online Slides

Preprints and Publications

  • Andrew J. Blumberg and Michael A. Mandell.
    E2 structures and derived Koszul duality in string topology.
    arXiv:1801.03549 [math.AT]

  • Andrew J. Blumberg and Michael A. Mandell.
    The strong Künneth theorem for topological periodic cyclic homology.
    arXiv:1706.06846 [math.KT] Better version: pdf

  • Andrew J. Blumberg and Michael A. Mandell.
    Tate-Poitou duality and the fiber of the cyclotomic trace for the sphere spectrum.
    arXiv:1508.00014 [math.KT]

  • Andrew J. Blumberg and Michael A. Mandell.
    The homotopy groups of the algebraic K-theory of the sphere spectrum.
    arXiv:1408.0133 [math.KT] Better version: pdf

  • V. Angeltveit, A. Blumberg, T. Gerhardt, M. Hill, T. Lawson, M. Mandell.
    Relative cyclotomic spectra and topological cyclic homology via the norm
    arXiv:1401.5001 [math.KT]

  • Andrew J. Blumberg and Michael A. Mandell.
    Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories.
    arXiv:1111.4003 [math.KT]

  • Published