## Contact Information

### Address

- Department of Mathematics
- Rawles Hall
- Indiana University
- Bloomington, IN 47405
### Office

- Rawles Hall 449
- (812) 855-8524
## Research

### Conferences and Seminars

- Department Topology Seminar Calendar
- Department Topology-Geometry Seminar Calendar
- Department Colloquium Calendar
- Midwest Topology Seminar Main Page, Bloomington Fall 2006, Chicago Fall 2009, Indianapolis Spring 2014, Bloomington Spring 2018
- Upcoming Topology Conferences List
### Recent Conference and Seminar Talks

- These are uncorrected and contain several typos, sometimes bad ones.

*E*Structures and Derived Koszul Duality in String Topology_{2}

AMS Fall 2018 Central Sectional Meeting, Ann Arbor, MI 10/20/18 pdf (approx 509k)

- Introduction to THH and related theories

Floer Homology and Homotopy, UCLA 7/17/17. pdf (approx 755k)

- Topological Periodic Cyclic Homology

HIM Workshop on K-theory and Related Fields 6/27/17. pdf (approx. 837k)

Shanks Workshop on Homotopy Theory, Vanderbilt University 3/25/17. pdf (approx. 807k)

MIT Topology Seminar 3/13/17. pdf (approx. 846k)

- All Online Slides

### Preprints and Publications

- Andrew J. Blumberg and Michael A. Mandell.

*E*_{2}structures and derived Koszul duality in string topology.

arXiv:1801.03549 [math.AT]

- Andrew J. Blumberg and Michael A. Mandell.

The strong Künneth theorem for topological periodic cyclic homology.

arXiv:1706.06846 [math.KT] Better version: pdf

- Andrew J. Blumberg and Michael A. Mandell.

Tate-Poitou duality and the fiber of the cyclotomic trace for the sphere spectrum.

arXiv:1508.00014 [math.KT]

- Andrew J. Blumberg and Michael A. Mandell.

The homotopy groups of the algebraic*K*-theory of the sphere spectrum.

arXiv:1408.0133 [math.KT] Better version: pdf

- V. Angeltveit, A. Blumberg, T. Gerhardt, M. Hill, T. Lawson, M. Mandell.

Relative cyclotomic spectra and topological cyclic homology via the norm

arXiv:1401.5001 [math.KT]

- Andrew J. Blumberg and Michael A. Mandell.

Localization for*THH(ku)*and the topological Hochschild and cyclic homology of Waldhausen categories.

arXiv:1111.4003 [math.KT]

- Published

- Andrew J. Blumberg and Michael A. Mandell.