Autonomous Robotics
COGS Q360 / CSCI B355

http://mypage.iu.edu/~rdbeer/COGS-Q360/
Course Design

- **Laboratory** Course
- Groups
 - 3 Students each
 - Programming experience + Hands-on experience
- Group Dynamics
 - Need to work together courteously and efficiently
 - Assign responsibilities fairly
 - Make sure everyone is well-versed on all aspects of each project
- Stations
 - Robot kits
 - Windows, RobotC, Office
 - Account
 - Desktop shortcuts
The Course

Course Goal: To teach you the basics of autonomous robotics

Mechanics

Electronics

Control
The Robot Kit
Course Design

- Course Web Page
 - Policies, Assignments, Syllabus, Documentation, Resources
- All grading will be done on Canvas
- A Word About Documentation
 - Instructor
 - Assignment
 - Library Reference
 - Robot C Documentation
 - Vex Documentation
- Lab Access
 - Class times: T/Th 9:30-10:45, F 9:05-9:55
 - Extended class times
 - Generally around during the day (Email first)
 - After hours by arrangement
Assessment

- 15% Class Participation
 - Attendance
 - Contribution
- 5% Design Notebooks
 - A written record of your work in class
 - Graded at Spring Break and end of semester
- 30% Assignment Demonstrations
- 50% Written Reports
- Although work is done in groups,
 Design notebooks and written reports are prepared individually
Class Participation

- Actively participate in all group activities at all times
- You are expected to be in the lab on time for every class
- Absences may be excused with permission
 - For interviews, contact me for prior approval
 - For illness, contact me as soon as possible
- Unexcused absences will be penalized
- Unexcused late arrivals will be penalized
Design Notebooks

- A dated written entry for each day you are in the lab
- Each entry is a substantive summary of work done
 - Design alternatives
 - Design discussions
 - Design decisions
 - Include sketches as appropriate
 - Include data collected as appropriate
- Each entry is legible
- Turn in on time
Assignment Demonstrations

• Follow specific directions for each assignment
Written Reports

• Typewritten and submitted via Canvas
• Explicit labeled sections (format may vary across assignments)
 ➢ Introduction
 ➢ Mechanical Design (discussion and labeled sketches/photos)
 ➢ Algorithmic Design (discussion and visual overview)
 ➢ Performance Evaluation
 ➢ Conclusion
 ➢ Appendices containing commented code, data, etc.
• Detailed enough that someone else who has taken the class should be able to understand what you did, why you did it that way, and how well it worked
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14</td>
<td>Course Introduction</td>
<td>Lecture Slides</td>
</tr>
<tr>
<td>1/16</td>
<td>SquareBot</td>
<td>SquareBot Assignment</td>
</tr>
<tr>
<td>1/21</td>
<td>SquareBot</td>
<td></td>
</tr>
<tr>
<td>1/23</td>
<td>Microcontroller Programming</td>
<td>Microcontroller Assignment, SquareBot Report Due</td>
</tr>
<tr>
<td>1/28</td>
<td>Microcontroller Programming</td>
<td></td>
</tr>
<tr>
<td>1/30</td>
<td>Sensor Characteristics</td>
<td>Sensor Assignment, Microcontroller Report Due</td>
</tr>
<tr>
<td>2/4</td>
<td>Sensor Characteristics</td>
<td></td>
</tr>
<tr>
<td>2/6</td>
<td>Sensor Characteristics</td>
<td></td>
</tr>
<tr>
<td>2/11</td>
<td>Sensor Characteristics</td>
<td></td>
</tr>
<tr>
<td>2/13</td>
<td>Maze Traversal</td>
<td>Lecture Slides, Maze Assignment, Sensor Report Due</td>
</tr>
<tr>
<td>2/18</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>2/20</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>2/25</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>2/27</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>3/5</td>
<td>Maze Traversal</td>
<td></td>
</tr>
<tr>
<td>3/10</td>
<td>Maze Traversal Competition</td>
<td></td>
</tr>
<tr>
<td>3/12</td>
<td>An Introduction to Manipulation</td>
<td>Lecture Slides, Manipulation Assignment, Maze Report Due</td>
</tr>
</tbody>
</table>
Karakuri ningyō
Jacques de Vaucanson’s Duck
Maillardet’s Draughtsman-Writer
Karel Capek’s “Rossum’s Universal Robots”
W. Grey Walter’s Turtles
Shakey
The Traditional AI View

Quasilinguistic symbolic expressions formally manipulated

\[
\begin{align*}
\text{at(block1, [3,20, -10])} \\
\text{at(ramp, [10, -10])} \\
\text{at(G, P1)} \land \text{at(ramp, P2)} & \Rightarrow \text{go(ramp, P2)} \\
\therefore \text{go(ramp, [10, -10])}
\end{align*}
\]

Robot = AI + sensors/actuators
Braitenburg Vehicles
Rodney Brooks
Robots Everywhere
Behavior and Cognition are properties of the entire brain-body-environment system, not of any individual component.

They can only be understood properly in this broader context.
Robot Movies!
Robot Movies!

ROBO-ONE 11
YOKOZUNA GREAT
VS
CHROME KID
MARCH 25, 2007 - TOKYO, JAPAN