Bifurcations on a Line

Reading: Chapter 3
Parameter Dependence

\[\dot{x} = f(x; c) = -x^3 + 5x + c \]
A Family of Dynamical Systems

\[\langle S, T, P, \phi_t (x; p) \rangle \]

\[\phi_t : S \times P \rightarrow S \]
(c, x) such that \(f(x; c) = -x^3 + 5x + c = 0 \)
Geometric Picture of a Bifurcation

\[
\dot{x} = f(x; c) = -x^3 + 5x + c
\]

Saddle-Node Bifurcation (Fold Bifurcation)

Structurally Unstable (Nonhyperbolic)
Analytical Picture of a Bifurcation

\[(c, x)\) such that

\[f(x, c) = -x^3 + 5x + c = 0\]
\[f'(x) = -3x^2 + 5 = 0\]

\[
(c, x) = \left(\pm \frac{10}{3} \sqrt{\frac{5}{3}}, \pm \sqrt{\frac{5}{3}} \right)
\]

EP condition

Nonhyperbolicity condition
Hysteresis
Potential Functions and Bifurcation

\[V(x) = -\int -x^3 + 5x + c \, dx = \frac{1}{4} x^4 - \frac{5}{2} x^2 - c x \]
More Parameter Dependence

\[\dot{x} = f(x; d) = -x^3 + dx \]

\[d = -5 \]
\[d = 0 \]
\[d = 5 \]
(d, x) such that

\[f(x; d) = -x^3 + dx = 0 \]
Even More Parameter Dependence

\[\dot{x} = f(x; c) = -x^3 + (1 - c)x + c \]

Transcritical Bifurcation
The General Cubic System

\[\dot{x} = f(x; d, c) = -x^3 + dx + c \]
(c, d, x) such that \(\dot{x} = f(x; d, c) = -x^3 + dx + c = 0 \)
\((c, d)\) Parameter Chart

\((c, d)\) such that

\[
\begin{align*}
 f(x; d, c) &= -x^3 + dx + c = 0 \\
 f'(x; d, c) &= -3x^2 + d = 0
\end{align*}
\]

\[4d^3 = 27c^2\]

EP condition

Nonhyperbolicity condition
Slices of the Equilibrium Surface
Transcritical Bifurcation in the Cubic System

\[F \]

\[F \]

\[F \]

\[F \]
Putting It All Together

\[f(x; d, c) = 0 \]

\[\dot{x} = f(x; d, c) = -x^3 + dx + c \]

\[
\begin{aligned}
 f(x; d, c) &= 0 \\
 f'(x; d, c) &= 0
\end{aligned}
\]
Combining Local Bifurcations

\[\dot{x} = -x^5 + x^3 + r x \]
Summary of Dynamics on a Line

- Limit Sets
 - Equilibrium points only \((f(x) = 0)\)

- Stability
 - Stable \((f'(x) < 0)\)
 - Unstable \((f'(x) > 0)\)
 - Nonhyperbolic \((f'(x) = 0)\)

- Phase Portraits

- Bifurcation Diagrams (equilibrium curves, \(f(x; p) = 0\))
 - Saddle-node \((f(x; p) = f'(x; p) = 0, \ldots)\)
 - Transcritical \((f(x; p) = f'(x; p) = 0, \ldots)\)
 - Pitchfork \((f(x; p) = f'(x; p) = 0, \ldots)\)
 - …

- Equilibrium Surfaces \((f(x; p_1, p_2) = 0)\)

- Parameter Charts (bifurcation curves, \(f(x; p_1, p_2) = f'(x; p_1, p_2) = 0)\)
Another Kind of Change with Parameters