Introduction to Dynamical Systems in Cognitive Science
(COGS Q580)
Course Info

• Instructor
 ➢ Randy Beer (540 Eigenmann, 856-0873, rdbeer@indiana.edu)

• Textbook
 ➢ “Nonlinear Dynamics and Chaos”, by Steven Strogatz

• Software
 ➢ Mathematica (available through IUware or IUanyWare)
 ➢ Dynamica (available through course web page)

• Web Page: http://mypage.iu.edu/~rdbeer/COGS-Q580/
 ➢ Lecture Slides
 ➢ Homework Assignments
 ➢ Supplementary Material
Course Info (cont.)

• Assessment
 ➪ (50%) Homework Assignments
 ✓ Late assignments will be penalized
 ✓ All work should be performed individually
 ➪ (25%) Midterm Exam
 ➪ (25%) Final

Resources

• Dynamical Systems Software
 ○ Dynamica
 ○ MatCont
 ○ XPPAUT
 ○ AUTO
 ○ Complete List
• Dynamical Systems
 ○ Strogatz Lectures
 ○ Dynamical Systems Magazine
 ○ Encyclopedia of Dynamical Systems
• Mathematica
 ○ An Elementary Introduction to the Wolfram Language
 ○ The Wolfram Language: Fast Introduction for Programmers
A Computational Perspective on Cognitive Systems

Characterized by: Symbolic representations and their systematic manipulation

Aspects Emphasized: Deliberative reasoning and language

Mathematics used: The formal theory of computation
A Connectionist Perspective on Cognitive Systems

Characterized by: Neuron-like units, distributed representation & learning

Aspects Emphasized: Associative reasoning and learning

Mathematics used: Linear algebra
A Dynamical Perspective on Cognitive Systems

Characterized by: Geometrical structure of trajectories over time

Aspects Emphasized: Temporal unfolding of cognitive processes

Mathematics used: Dynamical Systems Theory
Some References

Course Philosophy

• In order to go beyond metaphor, you must learn DST
 ➢ Computational modeling requires understanding computation
 ➢ Dynamical modeling requires understanding DST
• Dynamical Systems Theory is a mathematical theory
• Thus, this is mostly going to be a course in mathematics
• I promise to work very hard to clearly explain the mathematics
• But if you don’t understand something, ask questions!
• Not a “real” math course
 ➢ Focus on concepts and tools
 ➢ Not theorems and proofs
 ➢ Many concrete examples
• Experimental Mathematics
 ➢ Heavy use of computers for calculation and visualization
Hysteresis in Perception
The Dynamics of Spoken-Word Recognition

Phase Transitions in Coordination

Decision Field Theory

A Recurrent Neural Network that Learns to Count

\[a^n b^n \]

\[aaaaaaaaaabbbbbbbbb \]

\[S \rightarrow ()|X \]
\[X \rightarrow ()|()|()|X^* \]

\[(((()(()))))(((0))))((((((0)))))))) \]

The Dynamics of Piaget’s A-Not-B Error

The Dynamics of Language

“Boy who chases boy chases boy”

PCA I

PCA II

Behavior and Cognition are properties of the entire brain-body-environment system, not of any individual component. They can only be understood properly in this broader context.
Visually-Guided Behavior in Evolved Model Agents

Time Series Analysis Vs. Dynamical Systems Theory

- (c) Non-linear time series data
- (d) Principal component analysis of seizure and epileptic data

Attractor → Diffeomorphism → Reconstruction

Time series → Projection → Delay embedding