Poisson Boundaries of Lamplighter Groups:
Proof of the Kaimanovich–Vershik Conjecture

by Russell Lyons and Yuval Peres

Abstract. We answer positively a question of Kaimanovich and Vershik from 1979, showing that the final configuration of lamps for simple random walk on the lamplighter group over \( \mathbb{Z}^d \) \((d \geq 3)\) is the Poisson boundary. For \( d \geq 5 \), this had been shown earlier by Erschler (2011). We extend this to walks of more general types on more general groups.

§1. Introduction.

Suppose that \( \Gamma \) is a countable infinite group and \( \mu \) is a probability measure on \( \Gamma \) whose support generates \( \Gamma \) (as a group). A function \( f: \Gamma \to \mathbb{R} \) is called harmonic if \( f(x) = \sum z \mu(z)f(xz) \) for all \( x \in \Gamma \). If all bounded harmonic functions are constant, then \((\Gamma, \mu)\) is said to have the Liouville property. A general theory for the non-Liouville case was initiated by Furstenberg (1963, 1971a, 1971b), who defined the notion of Poisson boundary to describe the set of bounded harmonic functions. Such harmonic functions are closely linked to the \( \mu \)-walk, which is the Markov chain with transition probabilities \( p(x, y) := \mu(x^{-1}y) \). Earlier work on boundaries for general Markov chains is due to Blackwell (1955), Feller (1956), Doob (1959), Hunt (1960), and Feldman (1962); a special case for groups was established by Dynkin and Maljutov (1961).

Rosenblatt (1981) and Kaimanovich and Vershik (1983) (announced in Vershik and Kaimanovich (1979)) proved a conjecture of Furstenberg (1973) that \( \Gamma \) is amenable iff there is a symmetric \( \mu \) whose support generates \( \Gamma \) such that \((\Gamma, \mu)\) is Liouville. Another open question had been whether there exists an amenable group with a symmetric non-Liouville measure. To answer this, Vershik and Kaimanovich (1979, 1983) utilized certain restricted wreath products \( \mathbb{Z}_2 \wr \mathbb{Z}^d \), now commonly called lamplighter groups, where \( \mathbb{Z}_2 := \mathbb{Z}/(2\mathbb{Z}) \).
is referred to as the lamp group and \( \mathbb{Z}^d \) as the base group. These are solvable (hence amenable) groups of exponential growth. To define them more generally, let \( \mathcal{L} \) and \( \Lambda \) be two groups. Then \( \mathcal{L} \wr \Lambda \) is the semidirect product \( \left( \sum_{z \in \Lambda} \mathcal{L} \right) \rtimes \Lambda \), where \( \Lambda \) acts on \( \sum_{z \in \Lambda} \mathcal{L} \) by:

\[
(x \Phi)(z) := \Phi(x^{-1}z).
\]

Thus, if \( (\Phi, x), (\Psi, y) \in \sum_{x \in \Lambda} \mathcal{L} \times \Lambda \), then

\[
(\Phi, x)(\Psi, y) = (\Phi \cdot (x \Psi), xy).
\]

The interpretation of an element \( (\Phi, x) \) is that a lamplighter is at \( x \), there is one lamp at each element of \( \Lambda \), each lamp has a state in \( \mathcal{L} \), and \( \Phi \) gives the states of all the lamps. If \( \mathcal{L} \) and \( \Lambda \) are both finitely generated, then so is their restricted wreath product. To see this, write \( \text{id} \) for the identity in \( \Lambda \) and \( \text{id} \) for the identity in \( \mathcal{L} \). Write \( \text{ID} \) for the function that is equal to \( \text{id} \) identically on \( \mathcal{L} \). Also, write \( s \) for the element of \( \sum_{z \in \Lambda} \mathcal{L} \) that equals \( s \) at \( \text{id} \) and equals \( \text{id} \) elsewhere; thus, \( \text{ID} = \text{id} \). If \( S_1 \) and \( S_2 \) are generating sets for \( \mathcal{L} \) and \( \Lambda \), respectively, then an often-used generating set for \( \mathcal{L} \wr \Lambda \) is \( \{ (\delta^{s_1}, \text{id}) ; s_1 \in S_1 \} \cup \{ (\text{ID}, s_2) ; s_2 \in S_2 \} \). Multiplying \( (\Phi, x) \) on the right by a generator \( (\delta^{s_1}, \text{id}) \) changes the state of the lamp at \( x \) by \( s_1 \), while multiplying \( (\Phi, x) \) on the right by a generator \( (\text{ID}, s_2) \) moves the lamplighter to \( xs_2 \). Since every element of \( \sum_{z \in \Lambda} \mathcal{L} \) is the identity of \( \mathcal{L} \) at all but finitely many \( z \in \Lambda \), the above set does indeed generate \( \mathcal{L} \wr \Lambda \).

Let \( \mu \) be a finitely supported, symmetric probability measure whose support generates \( \mathbb{Z}_2 \wr \mathbb{Z}^d \). Kaimanovich and Vershik (1983), Proposition 6.4, showed that \( (\mathbb{Z}_2 \wr \mathbb{Z}^d, \mu) \) is Liouville iff \( d \leq 2 \). Vershik and Kaimanovich (1979, 1983) also asked for a description of the Poisson boundary for finitely supported \( \mu \) on the lamplighter groups \( \mathbb{Z}_2 \wr \mathbb{Z}^d \) when it is nontrivial, which, in the symmetric case, amounts to \( d \geq 3 \). Moreover, they suggested a natural candidate, namely, \( (\mathbb{Z}_2)^\mathbb{Z}^d \) with the probability measure given by the final configuration of lamps under the \( \mu \)-walk. On \( \mathbb{Z}_2 \wr \mathbb{Z}^d \), the final configuration of lamps, which we will denote by \( \Phi_\infty \), exists because the projection of the walk to the base group \( \mathbb{Z}^d \) is transient.

In 2008, a breakthrough was achieved by Erschler (2011, 2010), who proved that the conjecture of Vershik and Kaimanovich (1979) is correct when \( d \geq 5 \).

We show here that the conjecture of Vershik and Kaimanovich (1979) is correct for all \( d \geq 3 \). In fact, we prove the following main result. Say that a probability measure \( \mu \) on \( \mathcal{L} \wr \Lambda \) has **bounded lamp range** if \( \{ x \in \Lambda ; \exists (\Phi, y) \in \mathcal{L} \wr \Lambda \ \mu(\Phi, y) > 0 \text{ and } \Phi(x) \neq \text{id} \} \) is a finite set. This means that one step of the random walk can change the lamp values on only a set of bounded size, which holds, for example, if \( \mu \) has finite support. Write \( \mu_{\text{base}} \) for the projection of \( \mu \) on \( \Lambda \).
Theorem 1.1. Let $\mathcal{L}$ be a nontrivial finite group and $\Lambda$ be a finitely generated, infinite group. Let $\mu$ be a probability measure on $\mathcal{L} \wr \Lambda$ with finite entropy and bounded lamp range, and whose support generates $\mathcal{L} \wr \Lambda$. If $\mu_{\text{base}}$ generates a transient random walk on $\Lambda$, then the Poisson boundary is $\mathcal{L}^\Lambda$ endowed with the law of $\Phi_\infty$.

It follows readily from known results that if the projected measure $\mu_{\text{base}}$ generates a recurrent random walk on $\Lambda$ and $(\mathcal{L}, \nu)$ is Liouville for every $\nu$ whose support generates $\mathcal{L}$, then the Poisson boundary of $(\mathcal{L} \wr \Lambda, \mu)$ is trivial whenever the support of $\mu$ generates $\mathcal{L} \wr \Lambda$; see Proposition 4.9. This was proved earlier for abelian lamp groups (Proposition 1.2 in Kaimanovich, 1983) and, more generally, nilpotent lamp groups (Theorem 3.1 of Kaimanovich, 1991).

Theorem 1.1 is proved in Section 4, with various minor strengthenings. Theorems 3.3 and 4.8 give settings in which the assumptions that $\mathcal{L}$ be finite and that $\Lambda$ be finitely generated can be removed. The assumptions that $\mathcal{L}$ is finite and $\mu$ has bounded lamp range are replaced by a second-moment assumption in Theorem 5.1 when $\Lambda = \mathbb{Z}^d$.

Entropy is a key quantity in the study of Poisson boundaries. We are aware of no significant results that identify a nontrivial Poisson boundary in the presence of infinite entropy, although Forghani and Tiozzo (2019) manage to reduce finite logarithmic moment to finite entropy on free semigroups.

We introduce an enhanced version of the celebrated entropy criterion of Kaimanovich (2000), which has been the key tool for identification of Poisson boundaries. This is presented in Corollary 2.3 and used in Section 3. We also discuss it informally below in the context of the history of the subject.

Poisson boundaries are related to other important aspects of random walks. One fundamental aspect is to determine, given a random walk on a group $\Gamma$, its set of possible asymptotic behaviors, by which we mean the $\sigma$-field $\mathcal{I}$ on the path space $\Gamma^\mathbb{N}$ invariant under time shifts. There is a well-known correspondence between $\mathcal{I}$ and the space $\text{BH}$ of bounded harmonic functions on $\Gamma$. In particular, the invariant $\sigma$-field is trivial (i.e., consists only of sets of probability 0 or 1) iff all bounded harmonic functions are constant.

Following the introduction of asymptotic entropy by Avez (1972, 1974, 1976a, 1976b) and the 0–2 law of Derriennic (1976), a foundational paper by Kaimanovich and Vershik (1983), announced in Vershik and Kaimanovich (1979), developed a general theory to analyze Poisson boundaries. In particular, Avez, Derriennic (1980), and Kaimanovich–Vershik proved that if $\mu$ has finite entropy, then the Avez (asymptotic) entropy of the $\mu$-walk is 0 iff the walk is Liouville. Varopoulos (1985) showed that for finitely supported, symmetric $\mu$, the rate of escape of the $\mu$-walk is sublinear iff $(\Gamma, \mu)$ is Liouville. This was
extended by Karlsson and Ledrappier (2007) to symmetric \( \mu \) with finite first moment with respect to the word metric for a finite generating set.

Erschler (2004b) showed (1) that every finitely generated solvable group of exponential growth admits a symmetric non-Liouville measure, and (2) that every non-degenerate measure on \( \mathcal{L}/\Lambda \) whose projection to \( \Lambda \) is transient has nonzero Avez entropy. She also proved a result similar to (2) for the free metabelian groups \( \mathbb{F}_d/\mathbb{F}_d' \) with \( d \geq 3 \). Furthermore, Erschler (2004a) showed that there are groups of intermediate growth with finite-entropy, symmetric, non-Liouville measures. Frisch, Hartman, Tamuz, and Vahidi Ferdowsi (2019) extended this to show that every finitely generated group that is not of polynomial growth admits a finite-entropy symmetric non-Liouville measure.


Informally, Kaimanovich’s criterion says that in order that a candidate boundary be the Poisson boundary, it suffices to find a sequence of random finite sets \( Q_n \subset \Gamma \), that depend on points of the candidate boundary, such that \( |Q_n|^{1/n} \to 1 \) as \( n \to \infty \) and \( P[\Xi_n \in Q_n] \) is bounded below, where \( \Xi_n \) is the location of the random walk at time \( n \). One of Kaimanovich’s important observations was that the sets \( Q_n \) can often be defined geometrically. This led to his well-known strip and ray criteria. We enhance Kaimanovich’s more general criterion so that it suffices that \( \Xi_m \in Q_n \) for some \( m \geq n \).


Using these methods, Kaimanovich (2001) made some progress on the lamplighter question by showing that for \( \mu \) whose projection on the base group, \( \mathbb{Z}^d \), has nonzero mean, the final lamps do indeed give the Poisson boundary. This problem of identifying the Poisson boundary has been raised repeatedly (e.g., Kaimanovich (1991), Vershik (2000), Karlsson and Woess (2007), Sava (2010b), Erschler (2011, 2010), Georgakopoulos (2016)) and has been considered a major open problem in the field.

Beyond Erschler’s result on the Kaimanovich–Vershik conjecture, similar results have
been established for random walks \( \mu \) of finite first moment whose support generates one of the following groups \( \mathcal{L} \wr \Lambda \):

- \( \mathcal{L} \) is finitely generated and nontrivial, \( \Lambda \) has subexponential growth, and there is a homomorphism \( \psi: \Lambda \to \mathbb{Z} \) such that if \( \pi: \mathcal{L} \wr \Lambda \to \Lambda \) is the canonical projection, then \((\psi \pi)_* \mu \) has nonzero mean (Kaimanovich (2001));
- \( \mathcal{L} \) is finite and \( \Lambda \) is a group with a Cayley graph being a tree of degree at least 3 (Karlsson and Woess (2007));
- \( \mathcal{L} = \mathbb{Z}_2 \) and \( \Lambda \) is finitely generated and has infinitely many ends or is non-elementary hyperbolic (Sava (2010b)).

In all these cases, the projection of the random walk to \( \Lambda \) has linear rate of escape, and this makes the analysis considerably simpler.

Erschler (2011) also extended her result on \( \mathcal{L} \wr \mathbb{Z}^d \) (\( \mathcal{L} \) finitely generated and \( d \geq 5 \)) beyond finitely supported \( \mu \) to those with finite third moment, and noted that similar techniques work for free metabelian groups \( \mathbb{F}_d/\mathbb{F}_d' \) when \( d \geq 5 \).

Prior to the work of Erschler (2011), Kaimanovich’s entropy criterion was used in a mostly geometric fashion that did not require detailed knowledge of the probabilistic behavior of the random walks. Erschler succeeded in her results by discovering how to leverage such knowledge of random walks in \( \mathbb{Z}^d \) for \( d \geq 5 \). In particular, she relied heavily on the existence of a positive density of cutpoints (for simple random walk—and analogous behavior in general). That is, for the lamplighter random walk \( \langle \hat{X}_n \rangle \) on \( \mathbb{Z}_2 \wr \mathbb{Z}^d \), its projection \( X_n \) at time \( n \) to the base \( \mathbb{Z}^d \) is a cutpoint with probability bounded below over all \( n \). This allowed Erschler to define the required random finite sets \( Q_n \) that capture \( X_n \) with probability bounded below.

Our enhanced criterion allows the use of cut-spheres, which do not occur with positive density, but they do occur infinitely often for \( d = 3, 4 \). Use of cut-spheres also simplifies considerably the definition of the random sets \( Q_n \). This is a general feature of our enhanced criterion, which we illustrate with a simple proof of a conjecture of Sava (2010a). However, we do not use our enhanced criterion to handle general base groups, where other innovations are used. The innovation that is most closely related to cutpoints is to use upper bounds on the Green function in order to bound the number of times at which the future of the walk can get close to the locations of the past of the walk. In order to handle more general base groups beyond \( \mathbb{Z}^d \), other innovations convert small entropy growth found in various places into enumeration with small exponential growth of the required sets \( Q_n \).

We begin with the definition of the Poisson boundary and Kaimanovich’s criterion in Section 2. In order to present the proof of the original conjecture of Vershik and
Kaimanovich (1979) in the briefest manner, we prove Theorem 1.1 in Section 3 in the special case where the \( \mu \)-walk is simple random walk on \( \mathbb{L} \wr \mathbb{Z}^d \). We then prove the full Theorem 1.1 in Section 4. As did Erschler, we consider other step distributions \( \mu \) on \( \mathbb{L} \wr \mathbb{Z}^d \); in Section 5, we extend her result to \( d \geq 3 \) and to \( \mu \) having finite second moment. In this broader setting where generators can change lamps arbitrarily far from the location of the lamplighter, some technical condition is needed to ensure existence of the limiting lamp configuration, as discussed at the end of Section 5. One can also ask about infinitely generated base groups, \( \Lambda \); some of our results apply in that case: see Theorems 3.3 and 4.8. In Section 6, we give some details about metabelian groups and similar groups and discuss our extensions to them.

§2. Preliminaries.

For a discrete probability distribution \( \pi \) on a set \( S \), write \( H(\pi) := -\sum_{s \in S} \pi(s) \log \pi(s) \) for the entropy of \( \pi \). For a \( \sigma \)-field \( \mathcal{F} \) and a discrete random variable \( X \), write \( H(X) \) for the entropy of the distribution of \( X \) and \( H(X \mid \mathcal{F}) \) for the conditional entropy of \( X \) given \( \mathcal{F} \):

\[
H(X \mid \mathcal{F}) := -\mathbb{E}\left[\sum_x P[X = x \mid \mathcal{F}] \cdot \log P[X = x \mid \mathcal{F}]\right].
\]

Our Markov chains will begin at a fixed point; when that point is \( x \), we use \( P_x \) for the corresponding probability measure. Usually \( x \) will be the identity element, \( o \), of a group, \( \Gamma \). When a transition matrix is given, we often regard \( P_x \) as the law on \( \Gamma^\mathbb{N} \) of the trajectory of the corresponding Markov chain \( \langle \Xi_n; n \geq 0 \rangle \). The \( \sigma \)-field of shift-invariant events is denoted by \( \mathcal{I} \). We say that two \( \sigma \)-fields are equal \( \text{mod } 0 \) if their completions are equal, generally with respect to \( P_o \). The diagonal action of \( \Gamma \) by multiplication on \( \Gamma^\mathbb{N} \) induces an action of \( \Gamma \) on \( \mathcal{I} \); a subset \( J \subseteq \mathcal{I} \) is said to be \( \Gamma \)-closed if \( (A) \in J \) for all \( \gamma \in \Gamma \) and all \( A \in J \).

The following criteria of Kaimanovich (2000) (see Theorem 4.6 and Corollary 4.6 there, or see Theorem 14.35 and Corollary 14.36 of Lyons and Peres (2016)) are essential in identifying Poisson boundaries:

**Theorem 2.1.** Let \( \langle \Xi_n; n \geq 0 \rangle \) be a random walk on \( \Gamma \) with \( H(\Xi_1) < \infty \). Let \( \mathcal{I} \) be the associated invariant \( \sigma \)-field and \( J \subseteq \mathcal{I} \) be a \( \Gamma \)-closed sub-\( \sigma \)-field. Then \( h^J := \lim_{n \to \infty} n^{-1} H^J(\Xi_n) \) converges a.s. and in \( L^1 \) to the constant \( H(\Xi_1 \mid J) - H(\Xi_1 \mid \mathcal{I}) \). Furthermore, \( h^J = 0 \) iff \( J = \mathcal{I} \text{ mod } 0 \).

**Corollary 2.2.** Let \( \langle \Xi_n; n \geq 0 \rangle \) be a random walk on \( \Gamma \) with \( H(\Xi_1) < \infty \). Let \( \mathcal{I} \) be the associated invariant \( \sigma \)-field and \( J \subseteq \mathcal{I} \) be a \( \Gamma \)-closed sub-\( \sigma \)-field. Suppose that for each
\[ \epsilon > 0, \text{ there is a random sequence } \langle Q_{n, \epsilon} ; n \geq 0 \rangle \text{ of finite subsets of } \Gamma \text{ such that} \]

(i) \( Q_{n, \epsilon} \) is \( \mathcal{J} \)-measurable;

(ii) \( \limsup_{n \to \infty} \frac{1}{n} \log |Q_{n, \epsilon}| < \epsilon \) a.s.;

(iii) \( \limsup_{n \to \infty} \mathbb{P}_o[\exists n \in Q_{n, \epsilon}] > 0. \)

Then \( \mathcal{J} = \mathcal{I} \mod 0. \)

When \( \Gamma \) is replaced by the lamplighter group \( \mathcal{L} \), we will apply this to the \( \mathcal{L} \)-closed \( \sigma \)-field \( \mathcal{J} := \sigma(\Phi_\infty) \subseteq \mathcal{I} \) defined by the limiting configuration of lamps. Thus, \( Q_{n, \epsilon} \) will be a measurable function of configurations \( \Phi_\infty \).

In Section 3, we will illustrate the use of a more flexible version of the preceding corollary, to wit:

**Corollary 2.3.** Let \( \langle \Xi_n ; n \geq 0 \rangle \) be a random walk on \( \Gamma \) with \( H(\Xi_1) < \infty \). Let \( \mathcal{I} \) be the associated invariant \( \sigma \)-field and \( \mathcal{J} \subseteq \mathcal{I} \) be a \( \Gamma \)-closed sub-\( \sigma \)-field. Suppose that for each \( \epsilon > 0 \), there is a random sequence \( \langle Q_{n, \epsilon} ; n \geq 0 \rangle \) of finite subsets of \( \Gamma \) such that

(i) \( Q_{n, \epsilon} \) is \( \mathcal{J} \)-measurable;

(ii) \( \limsup_{n \to \infty} \frac{1}{n} \log |Q_{n, \epsilon}| < \epsilon \) a.s.;

(iii) \( \limsup_{n \to \infty} \mathbb{P}_o[\exists m \geq n \, \Xi_m \in Q_{n, \epsilon}] > 0. \)

Then \( \mathcal{J} = \mathcal{I} \mod 0. \)

**Proof.** Write

\[ p_n^\mathcal{J}(x, y) := \mathbb{P}_x[\Xi_n = y \mid \mathcal{J}] \]

for the transition probabilities of the Markov chain conditioned on \( \mathcal{J} \). We will use the following result of Kaimanovich (2000):

\[ \lim_{n \to \infty} \frac{1}{n} \log p_n^\mathcal{J}(o, \Xi_n) = -h^\mathcal{J} \quad \text{a.s.} \quad (2.1) \]

It suffices to show that \( h^\mathcal{J} = 0. \) Suppose that \( h^\mathcal{J} > 0 \) and define the random \( \mathcal{J} \)-measurable sets

\[ S_m := \{ x \in \Gamma ; p_m^\mathcal{J}(o, x) \leq \exp(-m h^\mathcal{J}/2) \}. \]

For \( \epsilon > 0, \)

\[ \mathbb{P}_o[\Xi_m \in Q_{n, \epsilon} \cap S_m \mid \mathcal{J}] \leq |Q_{n, \epsilon}| \cdot \exp(-m h^\mathcal{J}/2). \]

Summing over \( m \geq n \), we deduce that for \( 0 < \epsilon < h^\mathcal{J}/2, \)

\[ \mathbb{P}_o[\exists m \geq n \, \Xi_m \in Q_{n, \epsilon} \cap S_m \mid \mathcal{J}] \leq |Q_{n, \epsilon}| \cdot c \exp(-n h^\mathcal{J}/2) \to 0 \quad \text{a.s.} \quad (2.2) \]

as \( n \to \infty \), where \( c = c(h^\mathcal{J}) \) is a constant. Therefore,

\[ \mathbb{P}_o[\exists m \geq n \, \Xi_m \in Q_{n, \epsilon} \cap S_m] \to 0 \quad \text{as } n \to \infty. \quad (2.3) \]

By (2.1), \( \mathbb{P}_o[\exists m \geq n \, \Xi_m \notin S_m] \to 0 \) as \( n \to \infty \). In conjunction with (2.3), this implies that

\[ \mathbb{P}_o[\exists m \geq n \, \Xi_m \in Q_{n, \epsilon}] \to 0 \quad \text{as } n \to \infty, \]

contradicting the hypothesis (iii).
A **Poisson boundary** for a random walk on $\Gamma$ is a quadruple $(\Theta, \mathcal{F}, \nu, b)$, where $(\Theta, \mathcal{F}, \nu)$ is a probability space with $\mathcal{F}$ being countably generated and separating points, and where $b : (\Gamma^N, \mathcal{I}) \to (\Theta, \mathcal{F})$ is a $\Gamma$-equivariant measurable map that pushes forward $\mathcal{P}_\Theta$ to $\nu$ and such that $b^{-1} \mathcal{F} = \mathcal{I}$ mod $\mathcal{P}_\Theta$. It is unique up to isomorphism. For more details and background, see Kaimanovich (2000) or Definition 14.28 and Theorem 14.29 of Lyons and Peres (2016).

When we consider random walks on $L \wr \mathbb{Z}$, we will write $b X_n := \Phi_n(x_n)$ and $b Y_n := \Phi_n^{-1}(x_{n-1}) x_n$. Similarly, write $\langle b Y_n ; n \geq 1 \rangle$ for the increments of $\langle Y_n ; n \geq 1 \rangle$ on $L \wr \mathbb{Z}$, i.e., $Y_n := X_{n-1}^{-1} X_n$. Note that while $\langle Y_n \rangle$ are IID, $\Phi_n$ and $Y_n$ are in general dependent for each $n$. Also, for $x \in \Lambda$,

$$\Phi_n(x) = \Phi_n^{-1}(x) \Psi_n(x_n^{-1} x).$$

We generally assume that the support of (the law of) $Y_1$ generates $\Lambda$ and, likewise, the support of $\hat{Y}_1$ generates $L \wr \Lambda$.

Let $\text{lit} \phi$ denote the set of “lit lamps”, $\{x \in \Lambda ; \phi(x) \neq \text{id}\}$, of $\phi \in \mathcal{L}^\Lambda$, also sometimes referred to as the support of $\phi$.

Suppose that $\Phi_\infty := \lim_{n \to \infty} \Phi_n$ exists a.s. For example, this occurs if $E[\text{lit} \Psi_1] < \infty$ and $\langle X_n \rangle$ is transient (Kaimanovich (1991), Theorem 3.3, or Erschler (2011), proof of Lemma 1.1). In various cases, we will show that $(\mathcal{L}^\Lambda, \mathcal{F}, \nu, b)$ is a Poisson boundary, where $\mathcal{F}$ is the product $\sigma$-field, $\nu$ is the $\mathcal{P}_\text{id}$-law of $\Phi_\infty$, and $b : ((\mathcal{L} \wr \mathbb{Z})^N, \mathcal{I}, \mathcal{P}_\text{id}) \to (\mathcal{L}^\Lambda, \mathcal{F}, \nu)$ takes a sequence to its limiting configuration of lamps; on the set of measure 0 where the limiting configuration does not exist, we define $b$ to take the value $\text{id}$ for convenience.

We will use $c$ to stand for a positive constant, whose value can vary from one use to another.

When a group is finitely generated, we use the word metric to define $|x|$ as the distance between $x$ and the identity element.

§3. **Proof for the Classical Case.**

Here we give a very short proof of the basic conjecture of Vershik and Kaimanovich (1979) concerning random walks on $L \wr \mathbb{Z}^d$ for $d \geq 3$ and $L$ any nontrivial finite or countable group.

**Theorem 3.1.** Let $L$ be a nontrivial finite or countable group. Let $d \geq 3$. Let $\mu$ be a probability measure of finite entropy on $L \wr \mathbb{Z}^d$ whose support generates $L \wr \mathbb{Z}^d$. Suppose that
μ is concentrated on \( \{(δ^s, o) ; s ∈ ℋ\} \cup \{(ID, x) ; x ∈ ℤ^d\} \). If the projection of μ on ℤ^d is finitely supported and has mean 0, then the Poisson boundary of \((ℋ(ℤ^d, μ))\) is ℋ™ endowed with the law of \(Φ_∞\).

**Proof.** Write \(R\) for the maximum distance in ℤ^d from the current location that one step of the Markov chain can move. For \(r > 1\), consider the events

\[
\text{cut}_r := \left[ \exists m ≥ 1 \ (∀k < m \ |X_k| < r \text{ and } ∀j > m \ |X_j| > r) \right].
\]

In the proof of their Proposition 2.1, James and Peres (1996) showed that when the projection of μ is symmetric, \(P_o(\text{cut}_r) ≥ c/r\) and \(P_o(\text{cut}_r \cap \text{cut}_{r+j}) ≤ c/(rj)\). In fact, their proof depends only on estimates of the Green function, and those hold as long as the projection of μ has mean 0: see, e.g., Lawler and Limic (2010), Theorem 4.3.1. Thus, the preceding inequalities of James and Peres (1996) hold not only for symmetric Δ, but also for those Δ whose projection has mean 0. The second moment method applied to \(∑_{r=1}^{n^2} \text{cut}_r\), just as in the proof of Proposition 2.1 of James and Peres (1996), then yields that \(P_o(∪_{r=1}^{n^2} \text{cut}_r) ≥ c(\log n)^2/(\log n)^2 = c > 0\) for \(n > R\). Define \(Q_n := Q_{n,ϵ}(Φ_∞)\) to be the set of \((ϕ, x)\) such that \(|x| ≤ n^2\) and

\[
ϕ(z) = \begin{cases} Φ_∞(z) & \text{if } |z| < |x|, \\ \text{id} & \text{if } |z| ≥ |x|. \end{cases}
\]

If \(r ≤ n^2\) and the time \(m\) witnesses the event \(\text{cut}_r\), then \(X_m ∈ Q_n\) and \(m ≥ r/R\). Therefore, \(P_o[∃m ≥ n \ X_m \in Q_n] ≥ P_o(∪_{r=1}^{n^2} \text{cut}_r) ≥ c > 0\) for \(n > R\); since \(|Q_n| ≤ cn^{2d}\), Corollary 2.3 implies that \(σ(Φ_∞)\) coincides with ℍ mod 0.

It is not too hard to extend the above proof to all μ with finite support. We leave this as an exercise to the reader who wishes to better understand the method. A full proof of a more general result is given for Theorem 5.1.

As a further illustration of the usefulness of Corollary 2.3, we prove a conjecture of Sava (2010a). First we remark that the notion of Poisson boundary extends to all Markov chains, and criteria such as Corollary 2.3 extend to the setting of transitive Markov chains: see Kaimanovich and Woess (2002) for the required analogues of Theorem 2.1 and Equation (2.1), or see Lyons and Peres (2016), Proposition 14.34 and Theorem 14.35.

Now consider the d-regular tree, \(T_d\), and fix an end ξ of \(T_d\). The group of graph automorphisms that preserve ξ is known as the **affine group of** \(T_d\); it acts transitively on the vertex set, \(V(T_d)\). Fix some vertex \(o \in V(T_d)\). There is a horodistance function \(d_ξ: V(T_d) → ℤ\) defined by \(d_ξ(o) = 0\) and \(d_ξ(x) = d_ξ(y) + 1\) when \(y\) is the parent of \(x\) (the
unique neighbor of \( x \) in the direction of \( \xi \)). The affine group preserves differences of values of the horodistance function.

Let \( \mathcal{L} \) be a nontrivial finite group. We consider Markov chains \( \langle \widehat{X}_n; n \geq 1 \rangle = \langle (\Phi_n, X_n); n \geq 1 \rangle \) on the state space

\[
\mathcal{L} \cap T_d := \{ (\phi, x); \phi \in \mathcal{L}^V(T_d), |\text{lit} \phi| < \infty, x \in V(T_d) \}
\]

that change lamps only in a bounded neighborhood of the current location, make only bounded jumps in the base \( T_d \), and whose transition probabilities are invariant under the diagonal action of the affine group. Write \( R \) for the maximum distance in \( T_d \) from the current location that one step of the Markov chain can move or at which one step of the Markov chain can change the lamps.

Sava (2010a) conjectured the following Theorem 3.2. She proved that it holds when \( E[d_\xi(X_1)] \neq 0 \) (indeed, with \( R < \infty \) replaced by a first moment condition) or when \( \langle X_n \rangle \) is a nearest-neighbor random walk that can change lamps only at the location of the lamplighter.

**Theorem 3.2.** Let \( \langle \widehat{X}_n \rangle \) be a Markov chain that is invariant under the affine group of \( T_d \) such that \( R < \infty \) and the random walk projected to the base \( T_d \) is not constant. Then the Poisson boundary of \( \langle \widehat{X}_n \rangle \) is \( \mathcal{L}^V(T_d) \) endowed with the law of \( \Phi_\infty \).

**Proof.** We may assume that \( E[d_\xi(X_1)] = 0 \). Cartwright, Kaimanovich, and Woess (1994) proved that \( \langle X_n \rangle \) converges to \( \xi \) a.s. Let \( \xi_n \) be the \( \xi \)-ancestor of \( o \) with \( d_\xi(\xi_n) = -n \). Define the cone \( C_n := \{ x; \xi_n \text{ is an ancestor of } x \} \).

The case when \( \langle X_n \rangle \) is a nearest-neighbor random walk is somewhat simpler for our method: To see how it follows from Corollary 2.3, let \( Q_{n, e}(\phi_\infty) \) be the singleton \( \{(\phi_n, \xi_n)\} \), where \( \phi_n(y) = \phi_\infty(y) \) for \( y \in C_n \) and \( \phi_n(y) = \text{id} \) otherwise. Let \( \alpha := P_x[\forall j \geq 1 X_j \neq x] \); this does not depend on \( x \) by transitivity and is positive by transience. With \( P_{\text{ID}} \)-probability 1, there will be some random smallest time \( m \geq n \) such that \( X_m = \xi_n \). For this time \( m \), the chance that \( X_j \notin C_n \) for all \( j > m \) is equal to \( \alpha \) by the strong Markov property. Therefore, \( P_{\text{ID}}[\exists m \geq n \exists \widehat{X}_m \in Q_{n, e}(\Phi_\infty)] \geq \alpha > 0 \), as desired.

For the general case, let \( \tau_n \) be the first exit time of \( C_n \) \( (n \geq 0) \). Let \( K_n \) be the ball of radius \( R \) about \( \xi_n \). By transience, for each \( x \in K_0 \), there is some time \( t_x \geq 0 \) such that \( P_x[\forall s \geq t_x X_s \notin K_0] > 1/2 \). Choosing \( t_{\max} := \max_{x \in K_0} t_x \) gives a time such that \( P_x[\forall s \geq t_{\max} X_s \notin K_0] > 1/2 \) for all \( x \in K_0 \). Before time \( \tau_n \), a lamp can be changed only in \( C_n \cup K_n \). Let \( A_n \) be the ball of radius \( R(t_{\max} + 1) \) about \( \xi_n \). Then at times in \( [\tau_n, \tau_n + t_{\max}] \), the lamplighter must stay in \( A_n \) and the changes of lamps must be entirely
within $A_n$. We may define $Q_{n,e}(\phi_\infty)$ to consist of those $(\phi_n, x_n)$ such that $x_n \in A_{Rn}$ and such that

$$\phi_n(y) = \begin{cases} 
\phi_\infty(y) & \text{if } y \in C_{Rn} \setminus A_{Rn}, \\
\text{id} & \text{if } y \notin C_{Rn} \cup K_{Rn} \cup A_{Rn}.
\end{cases}$$

Then $Q_{n,e}(\phi_\infty)$ is of bounded size and $P_{ID}[\exists m \geq n \; \hat{X}_m \in Q_{n,e}(\Phi_\infty)] \geq 1/2$.

Our last illustration of the enhanced criterion Corollary 2.3 identifies the Poisson boundary when the projection of $\mu$ on the base group $\Lambda$ does not generate $\Lambda$ as a semigroup. Our proof in this case works for all nontrivial lamp groups and all countably infinite base groups, not necessarily finitely generated. We will not, however, need to use this result in our later proofs.

**Theorem 3.3.** Let $\mathfrak{L}$ be a nontrivial group and $\Lambda$ be an infinite group. Let $\mu$ be a probability measure of finite entropy on $\mathfrak{L} \setminus \Lambda$ whose support generates $\mathfrak{L} \setminus \Lambda$ (as a group) and is concentrated on $\{(\delta^s, o); \; s \in \mathfrak{L}\} \cup \{(ID, x); \; x \in \Lambda\}$. If the projection $\mu_{base}$ of $\mu$ on $\Lambda$ has support that does not generate $\Lambda$ as a semigroup, then the Poisson boundary of $(\mathfrak{L} \setminus \Lambda, \mu)$ is $\mathfrak{L}^\Lambda$ endowed with the law of $\Phi_\infty$.

The basic idea of the proof is that the random walk on the base group has infinitely many cut times.

**Proof.** Let $\Delta$ denote the semigroup generated by the support of $\mu_{base}$, including $o$. Then $\Delta^{-1}$ is also a semigroup, as is $\Delta' := \Delta \cap \Delta^{-1}$. Because $\Delta \cup \Delta^{-1}$ generates $\Lambda$ as a semigroup, $\Delta' \neq \Delta$ and $\alpha := P[Y_1 \notin \Delta'] > 0$. Let $\{t; \; Y_t \notin \Delta'\}$ be listed as $\langle \tau_n; \; n \geq 1 \rangle$ in increasing order. Note that for $x \in \Delta$ and $y \in \Delta \setminus \Delta^{-1}$, we have $xy\Delta \subset \Delta \setminus \Delta^{-1}$. Therefore, $X_{\tau_n+1} \Delta \subset X_{\tau_n}(\Delta \setminus \Delta^{-1}) \subset X_{\tau_n}\Delta$. Furthermore, if $x \in (\Delta')^k$ for some $k \geq 0$, then $\Delta = x\Delta$ because $x \in \Delta'$. That is, we have a monotonic decreasing sequence

$$\Delta = X_0\Delta = X_1\Delta = \cdots = X_{\tau_n-1}\Delta \supsetneq X_{\tau_n}\Delta = \cdots = X_{\tau_2-1}\Delta \supsetneq X_{\tau_2}\Delta = \cdots.$$

Given $x, y \in \Delta$, write $x \approx y$ if $x\Delta = y\Delta$, and write $x < y$ if $x\Delta \supsetneq y\Delta$. Write $x \preceq y$ if $x \approx y$ or $x < y$. Then for every $n$, we have $s, t \in [\tau_n, \tau_{n+1})$ implies $X_s \approx X_t$, whereas if $s < \tau_n \leq t$, then $X_s \prec X_t$.

Recall that lit $\phi$ denotes the set of lit lamps, $\{x \in \Lambda; \; \phi(x) \neq \text{id}\}$, of $\phi \in \mathfrak{L}^\Lambda$. Define the stopping times $\sigma_n := \inf \{t; \; \{s \leq t; \; X_s \in \text{lit}(\Phi_\infty)\} \geq n, \; X_t \in \text{lit}(\Phi_\infty), \; X_{t-1} \prec X_t\}$; necessarily, $\sigma_n \geq n$. Then $P[X_{\sigma_n} \prec X_{\sigma_n+1}] \geq \alpha$. On the event $[X_{\sigma_n} \prec X_{\sigma_n+1}]$, we have $\Phi_{\sigma_n}(x) = \Phi_\infty(x)$ for all $x \in \{X_s; \; s \leq \sigma_n\}$ and $\Phi_{\sigma_n}(x) = \text{id}$ for all other $x \in \Gamma$; also, $X_t \approx X_{\sigma_n}$ only for $t = \sigma_n$ on that event.
Let $\phi_\infty \in \mathfrak{L}^\Lambda$ be a possible limiting lamp configuration. For every $x, y \in \text{lit}(\phi_\infty)$, exactly one of the following holds: $x \approx y$, $x < y$, or $y < x$, because $x$ and $y$ lie in the trace of the random walk on $\Lambda$. Define $Q_n(\phi_\infty)$ to be the set of all $(\phi_n, x)$ such that

(i) $x \in \text{lit}(\phi_\infty)$,
(ii) $|\{y \preceq x; y \in \text{lit}(\phi_\infty)\}| \geq n$,
(iii) if $y \in \text{lit}(\phi_\infty)$ and $y \approx x$, then $y = x$,
(iv) if $y \in \text{lit}(\phi_\infty) \ni z \prec x$ and $|\{y \preceq z; y \in \text{lit}(\phi_\infty)\}| \geq n$, then there is some $w \approx z$ with $w \neq z$ and $w \in \text{lit}(\phi_\infty)$,
(v) $\phi_n(y) = \begin{cases} \phi_\infty(y) & \text{if } y \preceq x \text{ and } y \in \text{lit}(\phi_\infty), \\
\text{id} & \text{otherwise.} \end{cases}$

We have shown that $P[\exists m \geq n \ X_m \in Q_n(\Phi_\infty)] \geq P[\hat{X}_{\sigma_n} \in Q_n(\Phi_\infty)] \geq \alpha$. In addition, $|Q_n(\Phi_\infty)| \leq 1$. Thus, the theorem follows from Corollary 2.3.

\section*{§4. Proof of Theorem 1.1.}

In this section, we prove Theorem 1.1. This comes in three parts; one handles base groups that have at least cubic growth and are Liouville for the projected walk (Theorem 4.6); one handles base groups of less than cubic growth (Theorem 4.7); and the last handles the rest (Theorem 4.8). In fact, Theorem 4.6 also handles some other cases; the reader interested in those cases can thereby find a proof that is simpler than the one that uses all three theorems. We will write “with high probability” to mean “with probability tending to 1 as $n \to \infty$.”

For ease in following our proofs, we will assume that $\mu$ is concentrated on $\{(s, o); s \in \mathfrak{L}\} \cup \{(\text{ID}, x); x \in \Lambda\}$. It will be easy to see that the same proofs—indeed, with simplifications—extend to all $\mu$ whose support is finite and generates $\mathfrak{L} \wr \Lambda$. The extension to $\mu$ with bounded lamp range involves merely technical complications.

We begin with five short lemmas.

**Lemma 4.1.** If $k \leq n/3$, then $\sum_{j=0}^k \binom{n}{j} \leq 2(ne/k)^k$.

**Proof.** Since $k! \geq (k/e)^k$ by Stirling’s inequality (p. 54 of Feller (1968)), we have $\binom{n}{k} \leq (ne/k)^k$. Since $\binom{n}{j+1} \geq 2\binom{n}{j}$ for $j < n/3$, the result follows by comparison with a geometric series. 

The following theorem of Shannon is well known and easy to prove via the weak law of large numbers (e.g., Cover and Thomas (2006), Theorem 3.1.2).
Lemma 4.2. If \( \pi \) is a discrete distribution on a set \( S \) with entropy \( H(\pi) \) and \( Y_n \sim \pi \) are independent, then there are sets \( \Lambda_n \subseteq S^n \) (\( n \geq 1 \)) such that \( \lim_{n \to \infty} n^{-1} \log |\Lambda_n| = H(\pi) \) and \( \lim_{n \to \infty} \mathbb{P}[(Y_1, Y_2, \ldots, Y_n) \in \Lambda_n] = 1. \)

Write \( \text{dist}(x, y) \) for the distance between \( x \) and \( y \) in some Cayley graph of \( \Gamma \) and \( V_\Gamma(r) \) for the number of points within distance \( r \) of the identity, \( \mathbf{o} \). Let \( B(x, r) \) denote the ball of radius \( r \) about \( x \). The following lemma is well known in cases such as symmetric simple random walk, due to celebrated results of Varopoulos; see, e.g., Corollary 7.3 of Coulhon, Grigor’yan, and Pittet (2001) or, for a short proof, Corollary 6.6 of Lyons and Oveis Gharan (2018). It is easily deduced for nonsymmetric random walks from known results, but for completeness, we include this derivation.

Lemma 4.3. Let \( \langle \Xi_n \rangle \) be a \( \mu \)-walk on a group \( \Gamma \) that satisfies \( V_\Gamma(r) \geq cr^d \) for all \( r \in \mathbb{N} \). Assume that the support of \( \mu \) generates \( \Gamma \) and that \( \mu(\mathbf{o}) \geq 1/2 \). Then \( p_t(\mathbf{o}, x) \leq ct^{-d/2} \) for all \( t \geq 1 \) and all \( x \in \Gamma \).

Proof. Let \( P \) be the transition matrix for the \( \mu \)-walk and \( \hat{P} \) denote its transpose, which is the transition matrix for another random walk. Since the support of \( \mu \) generates \( \Gamma \) and \( \mu(\mathbf{o}) > 0 \), some power \( P^j \) has the property that \( (P^j + \hat{P}^j)/2 \) is irreducible. Thus, for such \( j \), we have \( \alpha := \min\{p_j(x, y) + \hat{p}_j(x, y); x \sim y\} > 0 \). It is well known that \( \sum_{x \in S, y \in S} p_j(x, y) = \sum_{x \in S, y \in S} \hat{p}_j(x, y) \) for all finite \( S \subset \Gamma \) (e.g., see Morris and Peres (2005)). Since the sum of these two quantities is at least \( \alpha|\{(x, y); x \in S, y \notin S\}| \), it follows that \( \sum_{x \in S, y \in S} p_j(x, y) \geq \alpha|\{(x, y); x \in S, y \notin S\}|/2 \). Now the result follows from the isoperimetric inequality of Coulhon and Saloff-Coste (1993) and Corollary 6.32(i) of Lyons and Peres (2016).

Lemma 4.4. For every symmetric, transient \( \mu \)-walk on a group \( \Gamma \),

\[
\sup_{t=0}^{\infty} \sum_{x \in \Gamma} p_t(\mathbf{o}, x) < \infty.
\]

Proof. It is well known that for even \( t \), we have \( p_t(\mathbf{o}, x) \leq p_t(\mathbf{o}, \mathbf{o}) \). Choose \( y \) with \( \mu(y) > 0 \). For odd \( t \), we have \( p_t(\mathbf{o}, x) \leq p_{t-1}(\mathbf{o}, xy)/\mu(xy) \leq p_{t-1}(\mathbf{o}, \mathbf{o})/\mu(y) \). Thus, the result follows from \( \sum_{t=0}^{\infty} p_t(\mathbf{o}, \mathbf{o}) < \infty \).

Lemma 4.5. Let \( \langle \Xi_n \rangle \) be a random walk on \( \Gamma \). Let \( 0 \leq k < m \). Suppose that \( \mathcal{M} \) is a random subset of \( \Gamma \) that is measurable with respect to \( \langle \Xi_1, \ldots, \Xi_k \rangle \). Then

\[
\mathbb{P}[\Xi_m \in \mathcal{M}] \leq \mathbb{E}[|\mathcal{M}|] \sup_{x \in \Gamma} p_{m-k}(\mathbf{o}, x).
\]

13
If $\mathcal{M} = B(\Xi_k, r)$, then

$$P[\Xi_m \in \mathcal{M}] = \sum_{x \in B(\mathbf{0}, r)} p_{m-k}(\mathbf{0}, x).$$

Proof. For each $y \in \Gamma$, we have

$$P[\Xi_m = y \mid \Xi_1, \ldots, \Xi_k] = p_{m-k}(\mathbf{0}, \Xi_k^{-1}y) \leq \sup_{x \in \Gamma} p_{m-k}(\mathbf{0}, x).$$

Summing over $y \in \mathcal{M}$ and then taking expectation gives the first result. In the second case, we use instead the identity

$$P[\Xi_m \in \mathcal{M} \mid \Xi_1, \ldots, \Xi_k] = \sum_{y \in \mathcal{M}} p_{m-k}(\mathbf{0}, \Xi_k^{-1}y) = \sum_{x \in B(\mathbf{0}, r)} p_{m-k}(\mathbf{0}, x).$$

Theorem 4.6. Let $\mathfrak{L}$ be a nontrivial finite group and $\Lambda$ be a finitely generated, infinite group. Let $\mu$ be a probability measure of finite entropy on $\mathfrak{L} \setminus \Lambda$ whose support generates $\mathfrak{L} \setminus \Lambda$ and is concentrated on $\{(\delta^s, o) \mid s \in \mathfrak{L} \} \cup \{(\mathbf{1D}, x) \mid x \in \Lambda\}$. Suppose that the projection $\mu_{\text{base}}$ of $\mu$ on $\Lambda$ is Liouville and generates a transient random walk. If any one of the following conditions holds, then the Poisson boundary of $(\mathfrak{L} \setminus \Lambda, \mu)$ is $\mathfrak{L}^\Lambda$ endowed with the law of $\Phi_\infty$:

(a) the measure $\mu_{\text{base}}$ is symmetric; or

(b) the group $\Lambda$ has at least cubic growth; or

(c) the group $\Lambda$ is abelian.

A rough sketch of the proof follows. Since $(X_n)$ is Liouville, its asymptotic entropy is 0, whence there is some $t_0$ such that $H(X_{t_0}) < \epsilon t_0$. Lemma 4.2 converts this to a likely set of fewer than $e^{\epsilon n}$ possibilities for $S := \langle X_{jt_0} \mid j \leq n/t_0 \rangle$. For a large $\rho$, partially obscure the increments $\langle Y_k \mid 1 \leq k \leq n \rangle$ by replacing those $Y_k$ that satisfy $|Y_k| \leq \rho$ by $\ast$, to mean “unknown”; the resulting sequence $U \in (\Lambda \cup \{\ast\})^n$ has small entropy, so we again have a collection of size $< e^{\epsilon n}$ containing likely values $U$ of the partially obscured increments. In this way, we guess the large jumps and bound the others. Knowing $S$ and $U$, we define the set $M_i(S, U)$ of possible values for $\{X_j \mid (i-1)t_0 < j \leq it_0\}$, and $|M_i(S, U)| \leq t_0 V_\Lambda(\rho)^{t_0}$. In most locations $y \in M_i(S, U)$, we have $\Phi_n(y) = \Phi_\infty(y)$, and we can bound the number of possibilities for $\Phi_n(y)$ for the other $y$.

Proof. Since $H(X_1) < \infty$ and the walk on $\Lambda$ is Liouville, we have that $H(X_n) = o(n)$.

Let $\epsilon > 0$. Choose $t_0$ so that $H(X_{t_0}) < \epsilon t_0$. For $n \in t_0 \cdot \mathbb{Z}^+$, set $s_n := n/t_0$. Write $S := \langle X_{jt_0} \mid 1 \leq j \leq s_n \rangle$. Applying Lemma 4.2 to the $t_0$-step increments $X_{jt_0}^{-1}X_{(j+1)t_0}$ yields a set $S_n \subseteq \Lambda^{s_n}$ with $\log |S_n| < \epsilon t_0 s_n = \epsilon n$ and $P[S \in S_n] \to 1$.
Write
\[ u_\rho(x) := \begin{cases} x & \text{if } \text{dist}(o, x) > \rho, \\ \ast & \text{otherwise.} \end{cases} \quad (4.1) \]

Recall that \( \langle Y_k \rangle \) are the increments of the random walk on \( \Lambda \). Choose \( \rho \) so that \( H(u_\rho(Y_1)) < \epsilon \).

Write \( U := \langle u_\rho(Y_k) \rangle ; 1 \leq k \leq n \). By Lemma 4.2, there is a set \( U_n \subseteq (\Lambda \cup \{\ast\})^n \) with \( \log |U_n| < en \) and \( P[U \in U_n] \to 1 \). For each \( U \in U_n \) and \( 0 \leq j_1 < j_2 \leq n \), define the set \( L(U, j_1, j_2) \subset \Lambda \) to be the set of possible values of \( X_{j_1} \) that are consistent with \( U = U \). That is, let
\[ Z_k := \begin{cases} Y_k & \text{if } |Y_k| > \rho, \\ B(o, \rho) & \text{otherwise}, \end{cases} \]

and define
\[ L(U, j_1, j_2) := \prod_{j_1 < k \leq j_2} Z_k := Z_{j_1+1}Z_{j_1+2}\cdots Z_{j_2}. \quad (4.2) \]

When \( \Lambda \) is abelian, \( L(U, j_1, j_2) \) is a ball of radius at most \( \rho(j_2 - j_1) \). More generally,
\[ |L(U, j_1, j_2)| \leq V_\Lambda(\rho)^{j_2-j_1} \leq V_\Lambda(\rho)^t. \]

Given \( S = \langle x_1, x_2, \ldots, x_{s_n} \rangle \) and \( 1 \leq i \leq s_n \), write
\[ M_i(S, U) := \bigcup_{j=(i-1)t_0+1}^{it_0} x_{i-1}L(U, (i-1)t_0, j), \]

where \( x_0 := o \), for the set of possible values of \( \{X_j; (i-1)t_0 < j \leq it_0\} \) that are consistent with \( S = S \) and \( U = U \). Thus, \( \bigcup_{i\in[1, s_n]} M_i(S, U) \) contains all possible values of \( X_j \) for \( 0 < j \leq n \) that are consistent with \( S = S \) and \( U = U \); outside this set, every lamp must be the identity at time \( n \). Inside this set, the lamp at time \( n \) takes the same value as at time \( \infty \) except possibly at those locations that are visited after time \( n \).

Thus, let \( W := \{i \in [1, s_n]; \exists m > n \ X_m \in M_i(S, U)\} \). At the end of the last paragraph, we observed that
\[ \Phi_n(z) = \begin{cases} \Phi_\infty(z) & \text{for } z \in \bigcup_{i\in[1, s_n]\setminus W} M_i(S, U), \\ \text{id} & \text{for } z \notin \bigcup_{i\in[1, s_n]} M_i(S, U). \end{cases} \]

Choose \( a_n := \sqrt{E[|W|]} \). Write \( A_n := [|W| \leq a_n] \). We claim that in all three cases (a)–(c), \( \lim_{n \to \infty} E[|W|]/n = 0 \), whence \( \lim_{n \to \infty} E[|W|]/a_n = \lim_{n \to \infty} a_n/n = 0 \). Once we establish that, we may deduce that \( \lim_{n \to \infty} P(A_n) = 1 \) by Markov’s inequality.
In order to show our claim, apply Lemma 4.5 to see that for \( m > n, \ 1 \leq i \leq s_n, \) and \((i-1)t_0 < j \leq it_0,\)

\[
P[X_m \in X_{(i-1)t_0} \mathcal{L}(\mathcal{U},(i-1)t_0,j)] \leq \mathbb{E}[L(\mathcal{U},(i-1)t_0,j)] \sup_{x \in \Lambda} p_{m-j}(o,x) \leq V_\Lambda(\rho)^{t_0} \sup_{x \in \Lambda} p_{m-j}(o,x).
\]

By virtue of Lemmas 4.3 and 4.4, we have that in cases (a) and (b), 

\[
\alpha_\ell := V_\Lambda(\rho)^{t_0} \sum_{k > \ell} \sup_{x \in \Lambda} p_k(o,x) \to 0
\]
as \( \ell \to \infty. \) On the other hand, in case (c), \( X_{(i-1)t_0} \mathcal{L}(\mathcal{U},(i-1)t_0,j) \) is a ball of radius at most \( \rho t_0 \) that contains \( X_j, \) whence \( X_{(i-1)t_0} \mathcal{L}(\mathcal{U},(i-1)t_0,j) \subseteq \mathcal{B}(X_j,2\rho t_0). \) Thus, in case (c), it follows from Lemma 4.5 that for \( m > n, \ 1 \leq i \leq s_n, \) and \((i-1)t_0 < j \leq it_0,\)

\[
P[X_m \in X_{(i-1)t_0} \mathcal{L}(\mathcal{U},(i-1)t_0,j)] \leq \sum_{|x| \leq 2\rho t_0} p_{m-j}(o,x).
\]

In this case, transience guarantees that

\[
\alpha_\ell := \sum_{k > \ell} \sum_{|x| \leq 2\rho t_0} p_k(o,x) \to 0
\]
as \( \ell \to \infty. \) Therefore, in all three cases,

\[
\mathbb{E}[W] \leq \sum_{j \leq n} \sum_{m > n} P[X_m \in X_{([j/t_0]-1)t_0} \mathcal{L}(\mathcal{U},([j/t_0]-1)t_0,j)] \leq \sum_{j \leq n} \alpha_{n-j} = \sum_{j \leq n} \alpha_j = o(n)
\]
as \( n \to \infty, \) as claimed.

Let \( \phi_\infty \in \mathcal{L}_\Lambda^A \) be a possible limiting lamp configuration. For \( n \in t_0 \cdot \mathbb{Z}^+, \) define \( Q_{n,\varepsilon}(\phi_\infty) \) to be the set of all \((\phi_n, x)\) such that there are \( U, S, \) and \( W \) satisfying

(i) \( U \in \mathcal{U}_n, \)

(ii) \( S = (x_1,x_2,\ldots,x_{s_n}) \in \mathcal{S}_n \) with \( x_{s_n} = x, \)

(iii) \( W \subseteq [1, s_n] \) with \( |W| \leq a_n, \)

and

(iv) \( \phi_n(z) = \begin{cases} \phi_\infty(z) & \text{for } z \in \bigcup_{i \in [1,s_n]}\backslash W M_i(S,U), \\ \text{id} & \text{for } z \notin \bigcup_{i \in [1,s_n]} M_i(S,U). \end{cases} \)

We have established that \( \mathcal{U}, S, \) and \( W \) satisfy (i)–(iv) with high probability as choices for \( U, S, \) and \( W, \) respectively, when \( \phi_\infty = \Phi_\infty, \) \( \phi_n = \Phi_n, \) and \( x = X_n, \) and thus \( \lim_{t_0 \to \infty} \mathbb{E}[\hat{X}_n \in Q_{n,\varepsilon}(\Phi_\infty)] = 1. \) To establish the theorem, in light of Corollary 2.2, it suffices to show that \(|Q_{n,\varepsilon}(\phi_\infty)| < e^{2en+o(n)} \) because \( \varepsilon \) was arbitrary.
By definition, the number of choices of \( U \in U_n \) is at most \( e^{cn} \) and the number of choices of \( S \in S_n \) is at most \( e^{cn} \). For large \( n \), the number of choices of \( W \) is at most \( 2(\frac{n}{a_n}e)^{a_n} = e^{o(n)} \) by Lemma 4.1. Note that \(|M_t(S, U)| \leq t_0 V_\Lambda(\rho)^{t_0} \). Thus, given \( S \) and \( W \), the number of choices of \( \phi_n \) is at most \(|G|^{|W|^{|t_0 V_\Lambda(\rho)^{t_0}} a_n} = e^{o(n)} \). Therefore, \(|Q_{n,\epsilon}(\phi_\infty)| < e^{2en+o(n)} \), as desired.

In order to handle the case of base groups with less than cubic growth, we modify the preceding proof in a couple of ways. By Gromov (1981), all such groups are finite extensions of \( Z \) or \( Z^2 \).

**Theorem 4.7.** Let \( \mathcal{L} \) be a nontrivial finite group and \( \Lambda \) be a finitely generated, infinite group with an abelian subgroup \( Z \) of finite index. Let \( \mu \) be a probability measure of finite entropy on \( \mathcal{L} \wr \Lambda \) whose support generates \( \mathcal{L} \wr \Lambda \) and is concentrated on \( \{(\delta^s, o); s \in \mathcal{L}\} \cup \{(\text{ID}, x); x \in \Lambda\} \). If the projection \( \mu_{\text{base}} \) of \( \mu \) on \( \Lambda \) generates a transient random walk, then the Poisson boundary of \( (\mathcal{L} \wr \Lambda, \mu) \) is \( \mathcal{L}^\Lambda \) endowed with the law of \( \Phi_\infty \).

The idea of the proof is to use the commutativity of \( Z \) to further specify the possible positions of the base walk in the first \( n \) steps, beyond what the previous proof accomplished. The aim is to pay most attention when the base walk lies in \( Z \). When the base walk moves far during an excursion between visits to \( Z \), then we will specify exactly the increments during an entire such excursion. With “far” having a sufficiently large threshold, such specification can be done with a collection of size \(< e^{cn} \) of likely values. There are extra difficulties because the times when the base walk lies in \( Z \) are random, but since we need to know only relatively few of them, we can choose a possible set of such times with small exponential growth.

**Proof.** Note that if \( \tau \) is a stopping time, then

\[
H(\langle Y_t; 1 \leq t \leq \tau \rangle) = E\left[ \sum_{t=1}^{\tau} \log \mu(Y_t) \right] = E[\tau] E[\log \mu(Y_1)] = E[\tau] H(Y_1).
\]

In particular, this is finite when \( E[\tau] < \infty \).

Since \( H(X_1) < \infty \) and the \( \mu_{\text{base}} \)-walk on \( \Lambda \) is necessarily Liouville, we have that \( H(X_n) = o(n) \). Let \( \epsilon > 0 \). Choose \( t_0 \) so that \( H(X_{t_0}) < \epsilon t_0 \). For \( n \in t_0 \cdot Z^+ \), set \( s_n := n/t_0 \). Write \( S := \langle X_{jt_0}; 1 \leq j \leq s_n \rangle \). Applying Lemma 4.2 to the \( t_0 \)-step increments \( X_{jt_0}^{-1} X_{(j+1)t_0} \) yields a set \( S_n \subseteq \Lambda^{s_n} \) with \( \log |S_n| < \epsilon t_0 s_n = \epsilon n \) and \( P[S \in S_n] \to 1 \).

For a sequence \( \pi = \langle x_j; 1 \leq j \leq t \rangle \), write

\[
\text{dist}_{\text{max}}(\pi) := \max\{\text{dist}(o, x_j); 1 \leq j \leq t\}.
\]
Write

\[ u_\rho(\bar{x}) := \begin{cases} 
\bar{x} & \text{if dist}_{\max}(\bar{x}) > \rho, \\
\ast & \text{otherwise.}
\end{cases} \]

Let \( \tau_Z(k) \) be the time of the \( k \)th visit of the \( \mu_{\text{base}} \)-walk to \( Z \), with \( \tau_Z(0) := 0 \). Because \([\Lambda : Z]\) is finite, \( \mathbb{E}[\tau_Z(1)] < \infty \). Abbreviate the sequence \( \langle X_{\tau_Z(k-1)}^{-1} X_j \rangle ; \tau_Z(k-1) < j \leq \tau_Z(k) \rangle \) as \( X_k \). Thus, \( X_k \) are IID with finite entropy by our first paragraph. Choose \( \rho \) so that \( H(u_\rho(\bar{X}_1)) < \epsilon \). We may also assume that \( \text{dist}(x, Z) \leq \rho \) for all \( x \in \Lambda \).

Write \( U := \langle u_\rho(\bar{X}_k) ; 1 \leq k \leq n \rangle \). Write \( \Lambda^{<\infty} \) for the set of finite sequences of elements from \( \Lambda \). By Lemma 4.2, there is a set \( U_n \subseteq (\Lambda^{<\infty} \cup \{\ast\})^n \) with \( \log |U_n| < \epsilon n \) and \( \mathbb{P}[U \in U_n] \to 1 \).

The times \( \tau_Z(k) \) for which \( u_\rho(\bar{X}_k) \neq * \) form a renewal process. Let \( T \) be the set of such renewal times \( \leq n \). The long-term rate \( \alpha_\rho \) of renewals tends to 0 as \( \rho \to \infty \). Let \( T_n \) be the collection of subsets of \( \{0, 1, 2, \ldots, n\} \) with size at most \( 2\alpha_\rho n \). We have \( \mathbb{P}[T \in T_n] \to 1 \) as \( n \to \infty \). By Lemma 4.1, for sufficiently large \( \rho \), the size of \( T_n \) is less than \( e^{\epsilon n} \) for all large \( n \). Without loss of generality, we may assume that \( \rho \) is that large. Let also \( T' \) be the set of times \( \tau_Z(k-1) \leq n \) for which \( u_\rho(\bar{X}_k) \neq * \). Because \( |T'| \leq |T| + 2 \), we also have \( \mathbb{P}[T' \in T_n] \to 1 \) as \( n \to \infty \). Write \( T'' \) for the set of pairs \( (T, T') \in T_n \times T_n \) that are possible values of \( (T, T') \): that is, they must interleave with the minimum coming from \( T' \).

Observe that \( (S, T, T', U) \) determines \( X_j \) for \( j \in [1, s_n] t_0 \) and also for \( (i-1) t_0 \leq j \leq \tau_Z(k) \) when \( \tau_Z(k-1) \leq (i-1) t_0 \) and \( u_\rho(\bar{X}_k) \neq * \), where \( 1 \leq i \leq s_n \). For all other \( j \leq n \), that quadruple forces \( X_j \) to lie in a ball of radius \( 3\rho t_0 \) about some point \( \beta_j \in Z \) that is measurable with respect to \( (S, T, T', U) \). Indeed, fix a map \( \zeta : \Lambda \to Z \) such that \( \text{dist}(x, \zeta(x)) \leq \rho \). Let \( j \in [(i-1) t_0, it_0] \). Define \( k \) by \( \tau_Z(k-1) < (i-1) t_0 \leq \tau_Z(k) \). Suppose first that \( j \leq \tau_Z(k) \). In case \( u_\rho(\bar{X}_k) \neq * \), then \( X_j \) is determined by \( (S, T, T', U) \), so we may take \( \beta_j := \zeta(X_j) \), whereas if \( u_\rho(\bar{X}_k) = * \), then \( X_j \in B(\zeta(X_{(i-1) t_0}), 2\rho) \), so we may take \( \beta_j := \zeta(X_{(i-1) t_0}) \). Suppose next that \( j > \tau_Z(k) \). Write \( \xi \) for the product of \( X_{\tau_Z(\ell)}^{-1} X_{\tau_Z(\ell)} \) over all \( \ell > k \) with \( \tau_Z(\ell) \leq j \) and \( u_\rho(\bar{X}_\ell) \neq * \). Because \( Z \) is abelian, \( X_j \) is \( B(\zeta(X_{\tau_Z(k)}), \rho t_0) \) and \( X_{\tau_Z(k)} \) is \( (S, T, T', U) \)-measurable in case \( u_\rho(\bar{X}_k) \neq * \), so we may take \( \beta_j := \zeta(X_{\tau_Z(k)}) \), and \( X_j \) is \( B(\zeta(X_{(i-1) t_0}), 2\rho + \rho t_0) \) and \( X_{(i-1) t_0} \) is \( (S, T, T', U) \)-measurable in the other case, so we may take \( \beta_j := \zeta(X_{(i-1) t_0}) \).

For each \( S \in S_n \), \( (T, T') \in T'' \), \( U \in U_n \), \( i \in [1, s_n] \), and \( j \in [(i-1) t_0, it_0] \), define the set \( L(S, T, T', U, j) \subset \Lambda \) to be the set of possible values of \( X_j \) that are consistent with \( S = S, \ T = T, \ T' = T', \) and \( U = U \). The preceding paragraph established that
$L(S, T, T', U, j)$ is contained in a ball of radius $3t_0$. Write

$$M_i(S, T, T', U) := \bigcup_{j=(i-1)t_0+1}^{it_0} L(S, T, T', U, j).$$

Thus, $\bigcup_{i \in [1, s_n]} M_i(S, T, T', U)$ contains all possible values of $X_j$ for $0 < j \leq n$ that are consistent with $(S, T, T', U) = (S, T, T', U)$; outside this set, every lamp must be the identity at time $n$. Inside this set, the lamp at time $n$ takes the same value as at time $1$ except possibly at those locations that are visited after time $n$.

Thus, let $W := \{i \in [1, s_n] : \exists m > n \ X_m \in M_i(S, T, T', U)\}$. At the end of the last paragraph, we observed that

$$\Phi_n(z) = \begin{cases} \Phi_{\infty}(z) & \text{for } z \in \bigcup_{i \in [1, s_n]} M_i(S, T, T', U), \\ \text{id} & \text{for } z \notin \bigcup_{i \in [1, s_n]} M_i(S, T, T', U). \end{cases}$$

Choose $a_n := \sqrt{E[|W|]} n$. Write $A_n := [|W| \leq a_n]$. We claim that $\lim_{n \to \infty} E[|W|]/n = 0$, whence $\lim_{n \to \infty} E[|W|]/a_n = \lim_{n \to \infty} a_n/n = 0$. Once we establish that, we may deduce that $\lim_{n \to \infty} P(A_n) = 1$ by Markov’s inequality.

In order to show our claim, apply Lemma 4.5 to see that for $m > n$, $1 \leq i \leq s_n$, and $(i-1)t_0 < j \leq it_0$, because $L(S, T, T', U, j) \subseteq B(X_j, 6\rho t_0)$,

$$P[X_m \in L(S, T, T', U, j)] \leq \sum_{|x| \leq 6\rho t_0} p_{m-j}(o, x).$$

Because of transience,

$$\alpha_\ell := \sum_{k > \ell} \sum_{|x| \leq 6\rho t_0} p_k(o, x) \to 0$$

as $\ell \to \infty$, whence

$$E[|W|] \leq \sum_{j \leq m > n} \sum_{j \leq n} P[X_m \in L(S, T, T', U, j)] \leq \sum_{j \leq n} \alpha_{n-j} = \sum_{j \leq n} \alpha_j = o(n)$$

as $n \to \infty$, as claimed.

Let $\phi_{\infty} \in \mathcal{L}^A$ be a possible limiting lamp configuration. For $n \in t_0 \cdot \mathbb{Z}^+$, define $Q_{n, \epsilon}(\phi_{\infty})$ to be the set of all $(\phi_n, x)$ such that there are $S$, $T$, $T'$, $U$, and $W$ satisfying

1. $S = (x_1, x_2, \ldots, x_{s_n}) \in S_n$ with $x_{s_n} = x$,
2. $(T, T') \in T_n'$,
3. $U \in U_n$,
4. $W \subseteq [1, s_n]$ with $|W| \leq a_n$,
and

\[(v) \quad \phi_n(z) = \begin{cases} 
\phi_\infty(z) & \text{for } z \in \bigcup_{i \in [1, s_n]} \mathcal{W} M_i(S, T, T', U), \\
\text{id} & \text{for } z \notin \bigcup_{i \in [1, s_n]} M_i(S, T, T', U). 
\end{cases}
\]

We have established that \((S, T, T', U, W)\) satisfy (i)--(v) with high probability as a choice for \((S, T, T', U, W)\) when \(\phi_\infty = \Phi_\infty, \ \phi_n = \Phi_n, \text{ and } x = X_n, \) and thus

\[
\lim_{t_0, z^+ \ni n \to \infty} P \left[ \hat{X}_n \in Q_{n, \epsilon}(\Phi_\infty) \right] = 1.
\]

To establish the theorem via Corollary 2.2, it suffices to show that \(|Q_{n, \epsilon}(\phi_\infty)| < e^{4\epsilon n + o(n)}\) since \(\epsilon\) was arbitrary.

By definition, \(|S_n| < e^{\epsilon n}, |T'_n| < e^{2\epsilon n}, \text{ and } |U_n| < e^{\epsilon n}|. For large \(n\), the number of choices of \(W\) is at most \(2(\frac{n}{dn})^{o_n} = e^{o(n)}\) by Lemma 4.1. Note that \(|M_t(S, T, T', U)| \leq t_0V_\Lambda(3\rho t_0)\). Thus, given \((S, T, T', U, W)\), the number of choices of \(\phi_n\) is at most

\[
|\mathcal{E}|^{W|t_0V_\Lambda(3\rho t_0)} \leq |\mathcal{E}|^{t_0V_\Lambda(3\rho t_0)a_n} = e^{o(n)}.
\]

Therefore, \(|Q_{n, \epsilon}(\phi_\infty)| < e^{4\epsilon n + o(n)}\), as desired.

Theorem 4.8. Let \(\mathcal{E}\) be a nontrivial finite or countable group and \(\Lambda\) be a countably infinite group. Let \(\mu\) be a probability measure of finite entropy on \(\mathcal{E} \wr \Lambda\) whose support generates \(\mathcal{E} \wr \Lambda\) and that is concentrated on \(\{(\delta^s, o) ; \ s \in \mathcal{E}\} \cup \{(ID, x) ; x \in \Lambda\}\). If the projection of \(\mu\) on \(\Lambda\) is non-Liouville, then the Poisson boundary of \((\mathcal{E} \wr \Lambda, \mu)\) is \(\mathcal{E} \wr \Lambda\) endowed with the law of \(\Phi_\infty\).

A rough sketch of the proof follows. Let \(\tau_x := \inf\{n ; \ X_n = x\}\). Let \(\rho_\Lambda(x) := -\log P_o[\tau_x < \infty]\), the negative log of the probability that the projection of the \(\mu\)-walk to \(\Lambda\), started at \(o\), ever visits \(x \in \Lambda\). Because the walk on \(\Lambda\) is non-Liouville, its Avez entropy is \(h^' > 0\). It is known that \(n^{-1} \rho_\Lambda(X_n) \to h^'\) a.s. Consider the sets \(W(r) := \{x \in \Lambda ; \ \rho_\Lambda(x) \leq r\}\), the sizes of which will not concern us. Given \(\epsilon > 0\), it is likely that for large \(n\), we have \(X_k \in W := W(nh^'(1 + \epsilon))\) for all \(k \leq n\) and also that \(X_m \notin W\) for all \(m > n(1 + 3\epsilon)\). At the same time, there is a reasonable chance that \(\Phi_\infty(X_n) \neq \text{id}\). Thus, there is a reasonable chance that \(\Phi_n\) agrees with \(\Phi_\infty\) on \(W \setminus \{X_{n+1}, \ldots, X_{n(1+\epsilon)}\}\), and it is likely that \(\Phi_n(z) = \text{id}\) for all \(z \notin W\). Furthermore, there are likely fewer than \(n(1 + 3\epsilon)\) locations \(z \in W\) where \(\Phi_\infty(z) \neq \text{id}\), whence it is likely, seeing \(\Phi_\infty\), that there are not many possibilities for where \(X_n\) is. Finally, it is likely that \(\hat{Y}_n\) for \(n < m \leq n(1 + 3\epsilon)\) belongs to a set of size \(e^{\epsilon n}\) (that does not depend on \(\Phi_\infty\)). From \(\Phi_\infty\) and these possibilities, we can thus likely deduce \(\Phi_n\).
Proof. Let \( h' > 0 \) be the Avez entropy of the projection of the \( \mu \)-walk to \( \Lambda \). By Proposition 6.2 of Benjamini and Peres (1994) in the symmetric case or Blachère, Haïssinsky, and Mathieu (2008) in general, \( \lim_{n \to \infty} n^{-1} \rho_\Lambda(X_n) = h' \) a.s.; this result is also proved as Theorem 14.50 of Lyons and Peres (2016). Write \( W(r) := \{ x \in \Lambda; \ \rho_\Lambda(x) \leq r \} \). Let \( \epsilon \in (0, 1/3) \). Let \( W := W(nh'(1+\epsilon)) \) and \( W' := W(n(1+3\epsilon)h'(1-\epsilon)) \). Since \((1+3\epsilon)(1-\epsilon) - (1+\epsilon) = \epsilon(1-3\epsilon) > 0\), it follows that \( W' \supset W \).

Write \( U := (\widehat{Y}_n; n < m \leq n + 3en) \). By Lemma 4.2, there is a set \( U_n \subseteq (\mathcal{U} \setminus \Lambda)^{[3en]} \) with \( \log |U_n| < 6enH(\widehat{X}_1) \) and \( P[U \in U_n] \to 1 \) as \( n \to \infty \).

Let \( A_n \) be the event that \( X_k \in W \) for all \( k \leq n \). Since every sequence \( (r_n) \) with \( \lim_{n \to \infty} r_n/n = h' \) has the property that for all sufficiently large \( n \), \( \forall k \leq n \ \ r_k < nh'(1+\epsilon) \), we have \( \lim_{n \to \infty} P(A_n) = 1 \). In addition, at any time, the walk may leave its current location with the lamp not equal to id, after 1 or 2 steps, and never return. Therefore, \( \inf_n P[\Phi_\infty(X_n) \neq \text{id}] > 0 \).

Recall that \( \text{lit} \phi \) denotes the set of lit lamps, \( \{ x \in \Lambda; \ \phi(x) \neq \text{id} \} \), of \( \phi \in \mathcal{L}^\Lambda \). Let \( D_n \) be the event that \( X_m \notin W \) for all \( m > n + 3en \). Since \( P[\forall m > n \ X_m \notin W((1+3\epsilon)h'(1-\epsilon))] \to 1 \) as \( n \to \infty \) and \( W((1+3\epsilon)h'(1-\epsilon)) = W' \supset W \), it follows that \( P(D_n) \to 1 \).

On the event \( D_n \), we have that \( |W \cap \text{lit} \Phi_\infty| \leq n + 3en \). Now, the lamp at any \( z \in W \) is changed at time \( m \in (n, n + 3en] \) by multiplying by \( \Psi_m(X_{m-1}^{-1}z) \), whence the total change from what it was at time \( n \) due to the changes in \( U \) is \( \prod_{m=n+1}^{n+[3en]} \Psi_m(X_{m-1}^{-1}z) \). Therefore, on the event \( D_n \), we have that for every \( z \in W \),

\[
\Phi_\infty(z) = \Phi_n(z) \prod_{m=n+1}^{n+[3en]} \Psi_m(X_{m-1}^{-1}z).
\]

Let \( \phi_\infty \in \mathcal{L}^\Lambda \). Define \( Q_{n, \epsilon}(\phi_\infty) \) to be the set of all \( (\phi_n, x) \) such that there is \( U \) satisfying

(i) \( U = ((\psi_{n+1}, y_{n+1}), \ldots, (\psi_{n+[3en]}, y_{n+[3en]})) \in U_n \),

(ii) \( |W \cap \text{lit} \phi_\infty| \leq n + 3en \),

(iii) \( x \in W \cap \text{lit} \phi_\infty \),

and

(iv) writing \( z_m := x \prod_{j=n+1}^{m} y_j \) for \( n \leq m \leq n + [3en] \) and

\[
\psi(z) := \prod_{m=n+1}^{n+[3en]} \psi_m(z_{m-1}^{-1}z),
\]

we have

\[
\phi_n(z) = \begin{cases} 
\phi_\infty(z)\psi(z)^{-1} & \text{for } z \in W, \\
\text{id} & \text{for } z \notin W.
\end{cases}
\]
Clearly using $U := \mathcal{U}$ satisfies (i) with high probability. We have proved that for $\phi_\infty = \Phi_\infty$ and $x = X_n$, the probability of (iii) is bounded away from 0. In addition, (ii) and (iv) hold on the event $D_n$, which is likely. Therefore, $\limsup_{n \to \infty} P[\hat{X}_n \in Q_{n,\epsilon}(\Phi_\infty)] > 0$.

By assumption, the number of choices of $U \in U_n$ is at most $e^{6/nH(\hat{\pi}_1)}$. The number of choices of $x$ is at most $2^n$. Therefore, $|Q_{n,\epsilon}(\phi_\infty)| < e^{6/nH(\hat{\pi}_1)+o(n)}$. This completes the proof.

Define $\zeta_n(x) := -\log P_\nu[\tau_x \leq n]$. We remark that one may use in the proof the more elementary fact that

$$\lim_{n \to \infty} -n^{-1} \zeta_n(X_n) = h'$$

(Benjamini and Peres (1994), proof of Proposition 6.2) in place of $\lim_{n \to \infty} n^{-1} \rho_\Lambda(X_n) = h'$.

Lastly, we explain why a recurrent base walk yields a Liouville measure. A group is called Choquet-Deny if every convolution walk on it is Liouville. Frisch, Hartman, Tamuz, and Vahidi Ferdowsi (2019) prove that such groups are exactly those groups with no ICC quotients, where an ICC group is a nontrivial group all of whose elements other than the identity have infinite conjugacy classes.

**Proposition 4.9.** Let $L$ be a Choquet-Deny group and $\Lambda$ be a countable group. Let $\mu$ be a probability measure on $L \wr \Lambda$ whose support generates $L \wr \Lambda$. If $\mu_{\text{base}}$ generates a recurrent random walk on $\Lambda$, then $(L \wr \Lambda, \mu)$ is Liouville.

**Proof.** By the assumption that the $\mu_{\text{base}}$-walk is recurrent, the subgroup $\Delta$ of elements of the form $(\Phi, o)$ is a recurrence set. Let $\nu$ denote the probability measure giving the first return to $\Delta$ from the identity. Then the Poisson boundary of $(L \wr \Lambda, \mu)$ is isomorphic to that of $(\Delta, \nu)$ by Lemma 4.2 of Furstenberg (1971b). Clearly, $\Delta$ is isomorphic to a direct sum of copies of $L$. On the other hand, the direct sum of Choquet-Deny groups is Choquet-Deny. To see this, let $\Gamma_i$ ($i \geq 1$) each have no ICC quotients and $\Gamma$ be their direct sum. Identify $\Gamma_i$ with the subgroup of elements of $\Gamma$ all of whose coordinates are the identity other than the $i$th. Let $\phi$ be a homomorphism of $\Gamma$. We want to show that $\phi(\Gamma)$ is not ICC. Because $\Gamma$ is generated by all $\Gamma_i$, we have that $\phi(\Gamma)$ is generated by all $\phi(\Gamma_i)$. If $\phi(\Gamma)$ is not trivial, then some $\phi(\Gamma_i)$ is not trivial and, by hypothesis, has a nontrivial element $\phi(\gamma_i)$, where $\gamma_i \in \Gamma_i$, with finite conjugacy class in $\phi(\Gamma_i)$. Since $\Gamma_i$ commutes with all other $\Gamma_j$ ($j \neq i$) and $\phi$ is a homomorphism, the conjugacy class of $\phi(\gamma_i)$ in $\phi(\Gamma_i)$ is the same as in $\phi(\Gamma)$. Thus, we obtain our desired result that $\phi(\Gamma)$ contains a nontrivial element with finite conjugacy class, so is not ICC. 


§5. General Generators.

Here we extend the result of Erschler (2011) from finite third moments to finite second moments on $\mathbb{Z}^d$, and from $d \geq 5$ to $d \geq 3$. We also allow infinite lamp groups.

**Theorem 5.1.** Let $\mathcal{L}$ be a nontrivial finitely generated group and $d \geq 3$. Let $\mu$ be a probability measure on $\mathcal{L} \wr \mathbb{Z}^d$ whose support generates $\mathcal{L} \wr \mathbb{Z}^d$ with $\sum_x |x|^2 \mu(x) < \infty$. Then the Poisson boundary of $(\mathcal{L} \wr \mathbb{Z}^d, \mu)$ is $\mathcal{L}^\Lambda$ endowed with the law of $\Phi_\infty$.

Note that for $x \in \mathbb{Z}^d$, its graph distance $|x|$ to $0 \in \mathbb{Z}^d$ is comparable to the $\ell^2$-norm $\|x\| := \langle \text{Cov}(X_1)x, x \rangle^{1/2}$, which we define for $x \in \mathbb{R}^d$. Write $B(r) := \{ z ; \|z\| \leq r \}$.

We have assumed that $\mathcal{L}$ is finitely generated only for brevity in the assumptions; see the first paragraph of the proof for what we use without this assumption.

We preface the proof of Theorem 5.1 with a sketch. The case when $E[X_1] \neq 0$ was established by Kaimanovich (2001), so assume that $E[X_1] = 0$. The main new difficulty compared to our previous proofs is that lamps may be changed at distances arbitrarily far from the lamplighter. Control over this distance is given by the moment assumption.

When $s$ is a large constant, for each $n$ there is a high chance that the first $n$ steps of the walk on the base $\mathbb{Z}^d$ do not exit the ball $B(s\sqrt{n})$, nor change any lamps outside the ball $B(2s\sqrt{n})$. In particular, there are only $cn^{d/2}$ possibilities for $X_n$ in this case. There is a tiny, but bounded below, chance that the walk on $\mathbb{Z}^d$ also has the property that it never visits the ball $B(4s\sqrt{n})$ after time $n(1+\epsilon)$; conditional on this event, the change is very small that any lamp in $B(2s\sqrt{n})$ is changed after time $n(1+\epsilon)$. There is a set of size $e^{\Omega n}$ that is likely to contain $\hat{Y}_{n+1}, \ldots, \hat{Y}_{n(1+\epsilon)}$. Having guessed $X_n \in B(s\sqrt{n})$, seeing $\Phi_\infty \mid B(s\sqrt{n})$, and having changed the lamps therein according to $\hat{Y}_{n+1}, \ldots, \hat{Y}_{n(1+\epsilon)}$, we arrive at our guess of $\hat{X}_n$.

**Lemma 5.2.** Let $d \geq 3$. Consider a random walk $\langle X_n \rangle$ on $\mathbb{Z}^d$ with $E[|X_1|^2] < \infty$ and $E[X_1] = 0$.

(i) We have $\lim_{s \to \infty} \inf_n P_0 \left[ \forall k \leq n \ |X_k| \leq s\sqrt{n} \right] = 1$.

(ii) For every $s > 0$,

$$\lim_{n \to \infty} \inf_{\|x\| \geq 2s\sqrt{n}} P_x \left[ \forall m \geq 0 \ |X_m| > s\sqrt{n} \right] = 1 - \frac{1}{2^{d-2}}.$$  

**Proof.** Part (i) is immediate from Kolmogorov’s maximal inequality (Theorem 2.5.2 in Durrett (2010)).

To prove part (ii), we let $A := \text{Cov}(X_1)^{-1/2}$ and define $Y_m := s^{-1}AX_m$. Let $\| \cdot \|$ be the standard Euclidean norm and $B_2(r)$ be the associated closed ball of radius $r$ about the
origin. Then (ii) can be rewritten in the form

\[
\lim_{n \to \infty} \sup_{|y|_2 \geq 2\sqrt{n}} \mathbf{P}_y[\exists m \geq 0 \mid |Y_m|_2 \leq \sqrt{n}] = 2^{d-2}.
\]

First recall that if standard Brownian in \( \mathbb{R}^d \) starts at \( z \) with \( |z|_2 = 2 \), then the probability that it ever visits the ball \( B_2(\alpha) \) of radius \( \alpha = (\alpha/2)^{d-2} \); see, e.g., Mörters and Peres (2010), Corollary 3.19. Given \( \epsilon > 0 \), we can select \( T = T(\epsilon) \) so that the probability this visit occurs before time \( T \) is at least \((1 - \epsilon) / 2^{d-2} \); taking \( \alpha := 1 - \epsilon \), we deduce from the \( d \)-dimensional Donsker invariance principle (see, e.g., Whitt (2002), Theorem 4.3.5),

\[
\lim_{n \to \infty} \sup_{|y|_2 \geq 2\sqrt{n}} \mathbf{P}_y[\exists m \in [0, nT] \mid |Y_m|_2 \leq \sqrt{n}] \geq ((1 - \epsilon) / 2^{d-2} - \epsilon ,
\]

and this gives the lower bound in (ii).

In dimension three, a matching upper bound follows from the asymptotic relation

\[
g(0, y) = (c_3 + o(1))|y|_2^{-1}
\]

for the Green function of \( \langle Y_j \rangle \) (see Spitzer (1976), Proposition P26.1), where \( c_3 \) is a positive constant. Indeed, if \( \tau \) is the hitting time of the ball \( B_2(\sqrt{n}) \) by \( \langle Y_j \rangle \) (which may be infinite), then the optional stopping theorem (e.g., Durrett (2010), Theorem 5.7.4) for the bounded martingale \( \langle g(0, Y_{\tau \wedge j}); j \geq 0 \rangle \) yields

\[
g(0, y) \geq \mathbf{P}_y[\tau < \infty] \cdot \min_{y_1 \in B_2(\sqrt{n})} g(0, y_1) .
\]

It follows that

\[
(c_3 + o(1))|y|_2^{-1} \geq \mathbf{P}_y[\tau < \infty](c_3 + o(1))n^{-1/2} ;
\]

the two occurrences of \( o(1) \) do not necessarily denote the same function. Since \( |y|_2 \geq 2\sqrt{n} \), we conclude that \( \mathbf{P}_y[\tau < \infty] \leq 1/2 + o(1) \).

It remains to prove the upper bound in (ii) for dimensions \( d > 3 \). Given \( \epsilon > 0 \), let \( T := \lceil d\epsilon^{-4} \rceil \). Another application of Donsker’s theorem yields

\[
\lim_{n \to \infty} \sup_{|y|_2 \geq 2\sqrt{n}} \mathbf{P}_y[\exists m \in [0, nT] \mid |Y_m|_2 \leq \sqrt{n}] \leq (1/2 + \epsilon)^{d-2} .
\]

By the central limit theorem, for every \( y \) in \( \mathbb{R}^d \) and sufficiently large \( n > 1 \),

\[
\mathbf{P}_y[|Y_{nT}|_2 \leq \epsilon\sqrt{nT}] \leq C_d\epsilon^d.
\]

24
If \( z \in \mathbb{R}^d \) satisfies \( |z|_2 > \epsilon \sqrt{nT} \geq \sqrt{nd}/\epsilon \), then one of the coordinate projections of \( z \) must have absolute value greater than \( \sqrt{n}/\epsilon \); projecting to a three-dimensional space containing that coordinate, we infer (from optional stopping in three dimensions) that as \( n \to \infty \),

\[
P_z[\exists m \in [0, \infty) \ |Y_m|_2 \leq \sqrt{n}] \leq (1 + o(1)) \epsilon.
\]

By considering whether \( |Y_{nT}|_2 \leq \sqrt{nd}/\epsilon \), we conclude that for some constant \( C_d \),

\[
\sup_{|y|_2 \geq 2 \sqrt{n}} P_y[\exists m \geq 0 \ |Y_m|_2 \leq \sqrt{n}] \leq (1/2 + \epsilon)^{d-2} + C_d \epsilon^d + (1 + o(1)) \epsilon.
\]

Let \( \text{rad} \) denote the radius of a subset of \( \Lambda \), meaning the maximum distance in the word metric of any of its elements from the identity \( o \in \Lambda \). Although we will apply the following lemma only for \( \Lambda = \mathbb{Z}^d \), we state it in general as it may find other uses. This lemma controls the changes of lamps far from the projection of the walk on the base group.

**Lemma 5.3.** Let \( \mathcal{L} \) be a group and \( \Lambda \) be a finitely generated group. Let \( \langle (\Psi_k, Y_k); k \geq 1 \rangle \) be the increments of a \( \mu \)-walk \( \langle \tilde{X}_n; \ k \geq 0 \rangle \) on \( \mathcal{L} \cap \Lambda \) such that \( P[Y_1 = o] \geq 1/2 \). Suppose that \( V_\Lambda(r)/r^d \) is bounded above and below by positive finite constants for some \( d \geq 3 \) and that \( \mathbb{E}[(\text{rad lit} \Psi_1)^2] < \infty \). Then for some constant \( c_\mu \), we have for every \( a > 0 \) that

\[
\sum_{k \geq 1} P[\text{rad lit} \Psi_k > a \cdot |X_{k-1}|] \leq c_\mu a^{-2} \mathbb{E}[(\text{rad lit} \Psi_1)^2].
\]

**Proof.** Let \( R \) be a random variable independent of \( \langle X_k \rangle \) that has the same distribution as \( a^{-1} \text{rad lit} \Psi_1 \). Since \( \Psi_k \) has the same law as \( \Psi_1 \) and is independent of \( X_{k-1} \), we have

\[
\sum_{k \geq 1} P[\text{rad lit} \Psi_k > a \cdot |X_{k-1}|] = \sum_{k \geq 1} P[R > |X_{k-1}|] = \mathbb{E} \left[ \sum_{k \geq 1} 1_{|R| > |X_{k-1}|} \right].
\]

The idea now is that for \( k > R^2 \), we control the chance that \( |X_{k-1}| < R \) by using Lemma 4.3, summing over the relevant possible values of \( X_{k-1} \). Thus,

\[
\mathbb{E} \left[ \sum_{k \geq 1} 1_{|R| > |X_{k-1}|} \right] \leq \mathbb{E} \left[ R^2 + \mathbb{E} \left[ \sum_{k > R^2} 1_{|R| > |X_{k-1}|} \mid R \right] \right]
\]

\[
\leq \mathbb{E} \left[ R^2 + \sum_{k > R^2} V_\Lambda(R)ck^{-d/2} \right]
\]

\[
\leq \mathbb{E} \left[ R^2 + cR^d(R^2)^{1-d/2} \right] = c \mathbb{E}[R^2].
\]

**Proof of Theorem 5.1.** Our assumption is that \( \mathbb{E}[(\tilde{X}_1)^2] < \infty \). However, all we will use of this moment condition is weaker, namely, that \( H(\tilde{X}_1) < \infty \), that \( \mathbb{E}[|X_1|^2] < \infty \), and
that $\mathbb{E}[(\text{rad lit } \Phi_1)^2] < \infty$. The first is a well-known consequence of the weaker assumption $\mathbb{E}[\hat{X}_1] < \infty$; the latter two follow from $|(\phi, x)| \geq \max \{ |x|, \text{rad lit } \phi \} + |\text{lit } \phi|$. Thus, we need not assume that $\mathcal{L}$ is finitely generated.

The case $\mathbb{E}[X_1] \neq 0$ was done by Kaimanovich (2001), so assume that $\mathbb{E}[X_1] = 0$.

Let $\epsilon \in (0, 1)$. Choose $s$ so large that

$$\inf_n \mathbb{P}_0 \left[ \forall k \leq n \ |X_k| \leq s\sqrt{n} \right] > \frac{1}{2} + \frac{\mathbb{E}[(\text{rad lit } \Phi_1)^2]}{s^2};$$

such an $s$ exists by Lemma 5.2. We will define random sets $Q_{n, \epsilon}$ that are $\Phi_\infty$-measurable in order to apply Corollary 2.2.

Abbreviate $\Lambda := \mathbb{Z}^d$.

Write $\mathcal{U} := (\hat{Y}_m : n < m \leq n + \epsilon n)$. By Lemma 4.2, there is a set $U_n \subseteq (\mathcal{L} \cap \Lambda)^{\lfloor \epsilon n \rfloor}$ with $\log |U_n| < 2\epsilon n H(\hat{X}_1)$ and $\mathbb{P}[U \in U_n] \rightarrow 1$.

We wish to define a set $Q_{n, \epsilon}(\Phi_\infty)$ that will contain $\hat{X}_n$ with reasonable probability and that will have small exponential growth. We will consider the possible increments $\mathcal{U}$ and the possible values of $X_n$ in $B(s\sqrt{n})$. Given such possible values, we guess values for $\Phi_n$ from the ones we see, $\Phi_\infty$, by correcting by the changes caused by $\mathcal{U}$. Namely, the lamp at some $z \in B(2s\sqrt{n})$ is changed at time $m \in (n, n + \epsilon n]$ by multiplying by $\Psi_m(z - X_{m-1})$, whence the total change from what it was at time $n$ due to the changes in $\mathcal{U}$ is $\prod_{m=n+1}^{n+\lfloor \epsilon n \rfloor} \Psi_m(z - X_{m-1})$. Provided that the lamps in $B(2s\sqrt{n})$ are not changed after time $n + \epsilon n$, we may multiply $\Phi_\infty(z)$ by the inverse of this product to guess $\Phi_n(z)$.

Thus, we proceed as follows. Let $\phi_\infty \in \mathcal{L}^\Lambda$. Define $Q_{n, \epsilon}(\phi_\infty)$ to be the set of all $(\phi_n, x)$ such that there is some $U = ((\psi_{n+1}, y_{n+1}), \ldots, (\psi_{n+\lfloor \epsilon n \rfloor}, y_{n+\lfloor \epsilon n \rfloor})) \in U_n$ and some $x \in B(s\sqrt{n})$, such that, writing $z_m := x + \sum_{j=n+1}^{m} y_j$ for $n \leq m \leq n + \epsilon n$ and

$$\psi(z) := \prod_{m=n+1}^{n+\lfloor \epsilon n \rfloor} \psi_m(z - z_{m-1}),$$

we have

$$\phi_n(z) = \begin{cases} \phi_\infty(z)\psi(z)^{-1} & \text{for } z \in B(2s\sqrt{n}), \\ \text{id} & \text{for } z \notin B(2s\sqrt{n}). \end{cases}$$

By assumption, the number of choices of $U \in U_n$ is at most $e^{2\epsilon n H(\hat{X}_1)}$. The number of choices of $x$ is at most $c\epsilon n^{d/2}$. Therefore, $|Q_{n, \epsilon}(\phi_\infty)| < e^{2\epsilon n H(\hat{X}_1) + o(n)}$.

We will prove that $\limsup_{n \to \infty} \mathbb{P}[\hat{X}_n \in Q_{n, \epsilon}(\Phi_\infty)] > 0$.

Let $A_n$ be the event that $\|X_k\| \leq s\sqrt{n}$ for all $k \leq n$. Let $C_n$ be the event that $\text{rad lit } \Psi_k > s\sqrt{n}$ for some $k \leq n$. Then

$$\mathbb{P}[\text{rad lit } \Psi_k > s\sqrt{n}] \leq \frac{\mathbb{E}[(\text{rad lit } \Psi_k)^2]}{s^2 n} = \frac{\mathbb{E}[(\text{rad lit } \Phi_1)^2]}{s^2 n}$$
by Chebyshev’s inequality, whence \( \mathbf{P}(C_n) \leq \mathbb{E}[(\text{rad lit } \Phi_1)^2]/s^2 \) by a union bound. Let \( D_n \) be the event that \( \Phi_n(y) = \text{id} \) for all \( y \notin B(2s\sqrt{n}) \). Then \( A_n \setminus D_n \subseteq C_n \), whence \( \mathbf{P}(A_n \cap D_n) = \mathbf{P}(A_n) - \mathbf{P}(A_n \setminus D_n) \geq \mathbf{P}(A_n) - \mathbf{P}(C_n) > 1/2 \) by choice of \( s \).

Let \( E_n \) be the event that \( \|X_{n+[\epsilon n]} - X_n\| > 5s\sqrt{n} \). Then \( \liminf_{n \to \infty} \mathbf{P}(E_n) > 0 \) and \( E_n \) is independent of \( A_n \cap D_n \); on the event \( A_n \cap D_n \cap E_n \), we have \( \|X_{n+[\epsilon n]}\| > 4s\sqrt{n} \). Let \( F_n \) be the event that for all \( m > n + \epsilon n \), we have \( \|X_m\| > 2s\sqrt{n} \). By Lemma 5.2, \( \lim_{n \to \infty} \mathbf{P}(F_n \mid A_n \cap D_n \cap E_n) = 1 - 1/2^{d-2} \).

Let \( G_n \) be the event that at no time after \( n + |\epsilon n| \) does the walk change a lamp in \( B(2s\sqrt{n}) \). Then \( A_n \cap D_n \cap E_n \cap G_n \) is contained in the event that for some \( m > n + \epsilon n \), we have \( \text{rad lit } \Psi_m > \|X_{m-1}\|/2 \), by which the Borel–Cantelli lemma and Lemma 5.3, has probability tending to 0 as \( n \to \infty \). Therefore, \( \liminf_{n \to \infty} \mathbf{P}(A_n \cap D_n \cap E_n \cap F_n \cap G_n) > 0 \).

On the event \( A_n \cap D_n \cap E_n \cap F_n \cap G_n \), we have that for every \( z \in B(2s\sqrt{n}) \),

\[
\Phi_\infty(z) = \Phi_n(z) \prod_{m=n+1}^{n+|\epsilon n|} \Psi_m(z - X_{m-1}),
\]

as desired.

Recall that our proof of Theorem 5.1 did not use the full strength of the hypothesis \( \mathbb{E}[|\hat{X}_1|^2] < \infty \), but only the weaker hypotheses that \( H(\hat{X}_1) < \infty \), that \( \mathbb{E}[|X_1|^2] < \infty \), and that \( \mathbb{E}[(\text{rad lit } \Phi_1)^2] < \infty \). This last assumption cannot be weakened to finiteness of a smaller moment, even if \( \langle X_n \rangle \) is simple random walk on \( \mathbb{Z}^3 \) and \( \mathcal{L} = \mathbb{Z}_2 \). To see this, we adapt Kaimanovich (1983), Proposition 1.1, which gave an example of a \( \mu \)-walk on \( \mathbb{Z}_2 \times \mathbb{Z} \) that yielded a nontrivial Poisson boundary but with no limiting configuration of lamps a.s. Indeed, suppose that \( \hat{X}_1 \) has the following distribution: With probability 1/2, \( \Psi_1 = 0 \) and \( X_1 \) is a step of simple random walk on \( \mathbb{Z}^3 \), while for each \( n \geq 1 \), with probability \( c_0/n^3 \), \( \Psi_1 = 1_{B(n)} \) and \( X_1 = 0 \), where \( c_0 := 1/(2\zeta(3)) \) is a normalizing constant. We still have \( H(\hat{X}_1) < \infty \), while \( \mathbb{E}[(\text{rad lit } \Phi_1)^2] < \infty \) iff \( a < 2 \). We claim that while \( \Phi_\infty \) does not exist a.s. for this walk, the Poisson boundary is nontrivial. To see this, condition on the walk in the base, \( \langle X_n \rangle \). If \( X_n = X_{n+1} \), then the chance that at time \( n + 1 \) the lamp changes at the origin is of order \( 1/(1 + \|X_n\|^2) \), independently of all other steps of the walk. Now \( \sum_n \left(1 + \|X_n\|^2\right)^{-1} = \infty \) a.s. by the law of the iterated logarithm, whence the Borel–Cantelli lemma yields infinitely many changes of the lamp at the origin a.s. On the other hand, the difference between the lamp at the origin and the lamp at \( (1,0,0) \) changes only finitely many times a.s., again by the Borel–Cantelli lemma, since if \( X_n = X_{n+1} \), then the chance that at time \( n + 1 \) this difference changes is of order \( 1/(1 + \|X_n\|^3) \), independently of all other steps of the walk, and \( \sum_n \left(1 + \|X_n\|^3\right)^{-1} < \infty \) a.s. by Dvoretzky and Erdős.
Therefore, the Poisson boundary is nontrivial. On the other hand, if \( \mu \) has a finite first moment and projects to a transient random walk on \( \mathbb{Z}^d \), then a limiting lamp configuration exists; see Theorem 3.3 of Kaimanovich (1991) or Lemma 1.1 of Erschler (2011). This general case is still open: is the harmonic measure on the limiting lamp configuration equal to the Poisson boundary? We remark that Erschler (2011) shows that the Poisson boundary can be nontrivial even for some random walks where no combination of lamps stabilizes.


As Erschler (2011) noted following Vershik (2000), free metabelian groups are sufficiently similar to lamplighter groups on \( \mathbb{Z}^d \) that similar results on their Poisson boundaries carry over. A group \( F \) is called \textit{metabelian} if \( F'' \) is trivial, where prime indicates commutator subgroup. Those of the form \( F_d = F'' \) are called \textit{free metabelian groups}, where \( F_d \) is the free group on \( d \) generators. More generally, consider groups of the form \( F_d = H' \), where \( H \) is a normal subgroup of \( F_d \). As explained by Erschler (2004b), with more details given by Vershik and Dobrynin (2005), the groups \( F_d = H' \) are isomorphic to groups of finite configurations on \( \Lambda := F_d/H' \) as follows.

Let \( G \) be the right Cayley graph of \( F_d/H \) corresponding to the free generators of \( F_d \). Orient each edge of \( G \) so as to form the group \( C_1(G) = C_1(G, \mathbb{Z}) \) of 1-chains. For each \( x \in \Lambda \), fix a finite path \( \langle e_1, \ldots, e_k \rangle \) of edges from \( o \in \Lambda \) to \( x \). To this path associate the 1-chain \( \theta_x := \sum_{j=1}^{k} \pm e_j \), where we choose the plus sign iff \( e_j \) is oriented in the direction from \( o \) to \( x \) along the path. For simplicity, we choose \( \theta_o := 0 \). Let \( Z_1(G) \) denote the space of cycles in \( C_1(G) \). (As there are no 2-cells, this is the same as \( H_1(G, \mathbb{Z}) \).) Note that \( H \) is the fundamental group of \( G \), and its abelianization, \( H/H' \), is canonically isomorphic to \( Z_1(G) \), meaning that the homomorphism \( \varphi : F_d \to C_1(G) \) defined by \( \varphi(a) := \theta_{aH} \) for generators \( a \) of \( F_d \) has kernel \( H' \) and \( \varphi(H) = Z_1(G) \). Now \( \Lambda \) acts on \( G \) by translation from the left, and so also acts on \( C_1(G) \), which we denote by \( (x, f) \mapsto T_x f \). Define \( \bar{\Lambda} \) to be the subset \( \{ \theta_x + f \mid x \in \Lambda, f \in Z_1(G) \} \subset C_1(G) \); this set is clearly independent of the choices of the chains \( \theta_x \). In addition, the map \( \theta_x + f \mapsto x \) from \( \bar{\Lambda} \to \Lambda \) is well defined. Define a multiplication on \( \bar{\Lambda} \) by

\[
(\theta_x + f)(\theta_y + g) := \theta_x + T_x \theta_y + f + T_x g.
\]

Then \( \bar{\Lambda} \) is closed under this multiplication because \( \theta_x + T_x \theta_y \) corresponds to a path from \( o \) to \( xy \). It is easy to check that \( \bar{\Lambda} \) is a group with identity element 0. Indeed, \( \bar{\Lambda} \) is canonically isomorphic to \( F_d/H' \) via the homomorphism \( \varphi \) defined above.
A random walk $\langle \theta X_n + \Phi_n \rangle$ on $\tilde{\Lambda}$ yields a.s. an edgewise limiting configuration in the space of cochains, $C^1(G)$, under weak conditions: As Erschler (2011) proved, it suffices that the walk on $\tilde{\Lambda}$ has finite first moment and projects to a transient random walk on $\Lambda$. Under similar conditions as our previous theorems and with similar proofs, the subset of possible limits, together with harmonic measures, is the Poisson boundary. For example, if $\Lambda = \mathbb{F}_d/H$ has at least cubic growth, then this holds for every finitely supported walk on $\tilde{\Lambda}$. In the case of free metabelian groups with $d \geq 3$, it holds for every walk having finite second moment. Erschler (2011) had proved this for free metabelian groups with $d \geq 5$ and $\mu$ having finite third moment.

Acknowledgements. We are grateful to Vadim Kaimanovich and Anatoly Vershik for posing the problem that we address here and for bringing attention to it over the years. We thank Anna Erschler for explaining her proof to us, Ori Gurel-Gurevich for helpful discussions, and Omer Tamuz for a useful reference. We thank the referees for careful readings and expert suggestions that led to the improvement of our exposition. We owe a particular debt to one of the referees for having urged us to extend our results.

REFERENCES


32


Department of Mathematics, 831 E. 3rd St., Indiana University, Bloomington, IN 47405-7106
rdlyons@indiana.edu
http://pages.iu.edu/~rdlyons/

Kent State University, Department of Mathematical Sciences, Mathematics and Computer Science Building 233, Summit Street, Kent, OH 44242
yperes@gmail.com
https://yuvalperes.com/