A NEW KEYNESIAN MODEL

ERIC M. LEEPER

1. The Model

This is a standard New Keynesian model with monopolistic competition and sticky prices in goods markets.\(^1\) We extend the model to include lump-sum taxes and a potentially non-trivial fiscal financing decision.

1.1. Households. The representative household chooses \(\{C_t, N_t, M_t, B_t\}\) to maximize

\[
E_t \sum_{i=0}^{\infty} \beta^i \left[C_{t+i}^{1-\sigma} \frac{1-\eta}{1+\eta} + \delta \frac{(M_{t+i}/P_{t+i})^{1-\kappa}}{1-\kappa} \right]
\]

with \(0 < \beta < 1, \sigma > 0, \eta > 0, \kappa > 0, \chi > 0\) and \(\delta > 0\). \(C_t\) is a composite consumption good that combines the demand for the differentiated goods, \(c_{jt}\), using a Dixit and Stiglitz (1977) aggregator:

\[
C_t = \left[\int_0^1 c_{jt}^{\frac{\sigma-1}{\theta}} dj \right]^\frac{\sigma}{\sigma-1}, \theta > 1.
\]

The household chooses \(c_{jt}\) to minimize expenditure on the continuum of goods indexed by the unit interval, leading to the demand functions for each good \(j\)

\[
c_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\theta} C_t,
\]

where

\[
P_t \equiv \left[\int_0^1 p_{jt}^{1-\theta} dj \right]^{\frac{1}{1-\theta}}
\]

is the aggregate price level at \(t\).

Using (4), the household’s budget constraint is

\[C_t + \frac{M_t}{P_t} + E_t \left(Q_{t,t+1} \frac{B_t}{P_t} \right) + \tau_t \leq \left(\frac{W_t}{P_t} \right) N_t + \frac{M_{t-1}}{P_t} + \frac{B_{t-1}}{P_t} + \Pi_t, \tag{5} \]

where \(\tau_t \) is lump-sum taxes/transfers from the government to the household, \(B_t \) is one-period nominal bonds, \(Q_{t,t+1} \) is the stochastic discount factor for the price at \(t \) of one unit of composite consumption goods at \(t+1 \), and \(\Pi_t \) is profits from the firm, which the household owns. The household maximizes (1) subject to (5) to yield the first-order conditions

\[\chi \frac{N^\sigma_t}{C_t} = \frac{W_t}{P_t}, \tag{6} \]

\[Q_{t,t+1} = \beta \left(\frac{C_t}{C_{t+1}} \right)^\sigma. \tag{7} \]

If \(R_t \) denotes the risk-free gross nominal interest rate between \(t \) and \(t+1 \), then absence of arbitrage implies the equilibrium condition

\[E_t \left[\frac{Q_{t,t+1} P_t}{P_{t+1}} \right] = \frac{1}{R_t}, \tag{8} \]

so the first-order conditions imply that real money balances may be written as

\[\frac{M_t}{P_t} = \delta^\kappa \left(\frac{R_t}{R_t - 1} \right)^{-1/\kappa} C_t^{\sigma/\kappa}. \tag{9} \]

We assume the government demands goods in the same proportion that households do, so the government’s demand is

\[g_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\theta} G_t, \tag{10} \]

where \(G_t = \left[\int_0^1 g_{jt}^{\theta+1} \, dj \right]^{\theta \sigma - 1} \).

1.2. **Firms.** A continuum of monopolistically competitive firms produce goods using labor. Production of good \(j \) is given by

\[y_{jt} = A_t N_{jt}, \tag{11} \]

where \(A_t \) is an aggregate technology shock, common across firms.

From (3) and (10), the demand curve firm \(j \) faces is given by

\[y_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\theta} Y_t, \tag{12} \]
where \(Y_t \) is defined by

\[
C_t + G_t = Y_t. \tag{13}
\]

Equating supply and demand for individual goods,

\[
A_t N_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\theta} Y_t. \tag{14}
\]

The real profit flow of firm \(j \) at period \(t \) is

\[
\Pi_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{1-\theta} Y_t - \frac{W_t}{P_t} N_{jt}. \tag{15}
\]

Following Calvo (1983), a fraction \(1 - \varphi \) firms are permitted to adjust their prices each period, while the fraction \(\varphi \) are not permitted to adjust. If firms are permitted to adjust at \(t \), they choose a new optimal price, \(p^*_t \), to maximize the expected discounted sum of profits given by

\[
E_t \sum_{i=0}^{\infty} \varphi^i Q_{t,t+i} \left[\left(\frac{p^*_t}{P_{t+i}} \right)^{1-\theta} - \Psi_{t+i} \left(\frac{p^*_t}{P_{t+i}} \right)^{-\theta} \right] Y_{t+i}. \tag{16}
\]

where \(Q_{t,t+i} = \beta^k (C_t/C_{t+i})^\sigma \) and profits have been rewritten using (14). \(\Psi_t \) is real marginal cost, defined as

\[
\Psi_t = \frac{W_t}{A_t P_t}. \tag{17}
\]

The first-order condition that determines \(p^*_t \) is\(^2\)

\[
0 = E_t \sum_{i=0}^{\infty} \varphi^i \Delta_{i,t+i} \left[(1 - \theta) \left(\frac{p^*_t}{P_{t+i}} \right)^{-\theta} + \Psi_{t+i} \left(\frac{p^*_t}{P_{t+i}} \right)^{-1-\theta} \right] \frac{C_{t+i} + G_{t+i}}{P_{t+i}}.
\]

Rearranging,

\[
0 = E_t \sum_{i=0}^{\infty} \varphi^i \Delta_{i,t+i} \left[(1 - \theta) \left(\frac{p^*_t}{P_{t+i}} \right) + \theta \Psi_{t+i} \right] \frac{C_{t+i} + G_{t+i}}{P_{t+i}} \left(\frac{p^*_t}{P_{t+i}} \right)^{-1-\theta},
\]

\[
0 = E_t \sum_{i=0}^{\infty} \varphi^i \Delta_{i,t+i} \left[(1 - \theta) \left(\frac{p^*_t}{P_{t+i}} \right) + \theta \Psi_{t+i} \right] (C_{t+i} + G_{t+i}) \left(\frac{1}{p^*_t} \right) \left(\frac{p^*_t}{P_{t+i}} \right)^{-\theta},
\]

which is (18).
NEW KEYNESIAN MODEL

\[E_t \sum_{i=0}^{\infty} \varphi^i Q_{t,t+i} \left[(1 - \theta) \left(\frac{p^*_{t+i}}{P_{t+i}} \right) + \theta \Psi_{t+i} \right] \left(\frac{1}{P^*_t} \right) \left(\frac{p^*_{t+i}}{P_{t+i}} \right)^{-\theta} Y_{t+i} = 0 \] \hspace{1cm} (18)

Using the definition of \(Q_{t,t+i} \) and rearranging, (18) is

\[\frac{p^*_t}{P_t} = \left(\frac{\theta}{\theta - 1} \right) \frac{E_t \sum_{i=0}^{\infty} (\varphi \beta)^i (Y_{t+i} - G_{t+i})^{-\sigma} \left(\frac{P_{t+i}}{P_t} \right)^{\theta} \Psi_{t+i} Y_{t+i}}{E_t \sum_{i=0}^{\infty} (\varphi \beta)^i (Y_{t+i} - G_{t+i})^{-\sigma} \left(\frac{P_{t+i}}{P_t} \right)^{\theta-1} Y_{t+i}}. \] \hspace{1cm} (19)

Denote (19) as

\[\frac{p^*_t}{P_t} = \left(\frac{\theta}{\theta - 1} \right) \frac{K_{1t}}{K_{2t}}, \] \hspace{1cm} (20)

where \(K_{1t} \) denotes the numerator and \(K_{2t} \) denotes the denominator. Note that these two expressions have the following recursive representations:

\[K_{1t} = (Y_t - G_t)^{-\sigma} \Psi_t Y_t + \varphi \beta E_t K_{1t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta} \] \hspace{1cm} (21)

and

\[K_{2t} = (Y_t - G_t)^{-\sigma} Y_t + \varphi \beta E_t K_{2t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta-1}. \] \hspace{1cm} (22)

Solving (20) for \(p^*_t \) and using the result in the price index

\[P_{t-1}^{1-\theta} = (1 - \varphi) \left(p^*_t \right)^{1-\theta} + \varphi P_{t-1}^{1-\theta}, \] \hspace{1cm} (23)

yields

\[\pi_t^{\theta-1} = \frac{1}{\varphi} - \frac{1 - \varphi}{\varphi} \left(\mu \frac{K_{1t}}{K_{2t}} \right)^{1-\theta}, \] \hspace{1cm} (24)

where \(\mu \equiv \theta/(\theta - 1) \).

Note that (20) determines \(p^*_t \) relative to aggregate \(P_t \), implying that we are free to choose a normalization for \(P_t \). Let \(P_t = 1 \) and define

\[\tilde{K}_{1t} = (Y_t - G_t)^{-\sigma} \Psi_t Y_t P_t^\theta + \varphi \beta E_t \tilde{K}_{1t+1} \] \hspace{1cm} (25)

and

\[\tilde{K}_{2t} = (Y_t - G_t)^{-\sigma} Y_t P_t^{\theta-1} + \varphi \beta E_t \tilde{K}_{2t+1}. \] \hspace{1cm} (26)

Then (20) becomes
\[p_t^* = \mu \frac{\tilde{K}_{1t}}{K_{2t}}, \]
and the expression for inflation becomes
\[\pi_t^{\theta - 1} = \frac{1}{\varphi} - \frac{1 - \varphi}{\varphi} \left(\mu \frac{\tilde{K}_{1t}}{K_{2t}} \right)^{1 - \theta}. \]

1.3. **Aggregation.** We assume that individual labor services may be aggregated linearly to produce aggregate labor:
\[N_t = \int_0^1 N_{jt} dj. \]
Linear aggregation of individual market clearing conditions implies
\[A_t N_t = \Delta_t Y_t, \]
where \(\Delta_t \) is a measure of relative price dispersion defined by
\[\Delta_t = \int_0^1 \left(\frac{p_{jt}}{P_t} \right)^{-\theta} dj. \]
Now the aggregate production function is given by
\[Y_t = \frac{A_t}{\Delta_t} N_t. \]
It is natural to define aggregate profits as the sum of individual firm profits,
\[\Pi_t = \int_0^1 \Pi_{jt} dj. \]
(15) and (33) imply that the aggregate profit flow can be expressed as
\[\Pi_t = Y_t - \frac{W_t}{P_t} N_t. \]
Substituting (34) into the household’s budget constraint, (5), and combining the result with the government’s budget constraint, yields the aggregate resource constraint
\[\frac{A_t}{\Delta_t} N_t = C_t + G_t. \]
We now derive the law of motion of relative price dispersion. From the definition of price dispersion, (31) and (23), relative price dispersion evolves according to
\[\Delta_t = (1 - \varphi) \left(\frac{p_t^*}{P_t} \right)^{-\theta} + \varphi \pi_t^\theta \Delta_{t-1}, \] (36)

where \(\pi_t = P_t/P_{t-1} \).

1.4. **Policy Specification.** Monetary policy is assumed to follow a standard Taylor-type rule

\[R_t = \alpha_0 + \alpha_1 \pi_t + \alpha_2 (Y_t - Y_t^*) + \varepsilon_t^{MP} \] (37)

and taxes are permitted to respond to the state of government indebtedness

\[\tau_t = \gamma_0 + \gamma_1 \frac{B_{t-1}}{P_{t-1}} + \varepsilon_t^{\tau}, \] (38)

where the \(\varepsilon \)'s are i.i.d. random variables.

The processes for \(\{G_t, \tau_t, M_t, B_t\} \) must satisfy the government budget identity

\[G_t = \tau_t + \frac{M_t - M_{t-1}}{P_t} + \frac{B_t - R_{t-1}B_{t-1}}{P_t}. \] (39)

1.5. **Stochastic Specification.** The remaining exogenous processes are assumed to obey univariate AR(1) processes with i.i.d. errors. Government purchases obey

\[G_t = (1 - \rho_G) \bar{G} + \rho_G G_{t-1} + \varepsilon_t^G, \] (40)

where \(\varepsilon_t^G \) has bounded support \([\underline{\varepsilon}^G, \overline{\varepsilon}^G]\) to ensure \(C_t > 0 \) for all \(t \) in all states. Technology obeys

\[\log(A_t) = (1 - \rho_A) \bar{A} + \rho_A \log(A_{t-1}) + \varepsilon_t^A, \] (41)

where \(\varepsilon_t^A \sim N(0, \sigma_A^2) \).

References

